
Input-shrinking functions:

theory and application

Francesco Davì

Submitted to the Department of Computer Science
in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy in Computer Science
at the Sapienza University of Rome

September 2011

Input-shrinking functions:

theory and application

Francesco Davì

Thesis Committee Reviewers

Dr. Stefan Dziembowski (Advisor) Prof. Miroslaw Kutylowski
Prof. Luigi Vincenzo Mancini Dr. Ivan Visconti
Prof. Alessandro Mei

Submitted to the Department of Computer Science
in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy in Computer Science
at the Sapienza University of Rome

September 2011

Author's address:
Francesco Davì
Computer Science Department
Sapienza, University of Rome
Via Salaria 113, 00198 Rome, Italy
e-mail: davi@di.uniroma1.it
www: http://www.dsi.uniroma1.it/~davi/

http://www.dsi.uniroma1.it/~davi/

i

Notation

List of abbreviations

AES Advanced Encryption Standard
AKE Authenticated Key Exchange
AONT All-Or-Nothing Transform
BRM Bounded-Retrieval Model
BSM Bounded-Storage Model
CBC Cipher-Block Chaining
CDH Computational Diffie-Hellman
CRS Common Reference String
DDH Decisional Diffie-Hellman
DH Diffie-Hellman
DPA Differential Power Analysis
DRAM Dynamic Random-Access Memory
EKE Encrypted Key Exchange
IC Ideal Cipher
IKE Internet Key Exchange
IV Initial Vector
LRS Leakage-Resilient Storage
MD Message Digest
MITM Man-in-the-middle
PAKE Password-based Authenticated Key Exchange
PPT Probabilistic Polynomial-Time
PRG Pseudo-Random Generator
RO Random Oracle
SHA Secure Hash Algorithm
SID Session Identifier
SPA Simple Power Analysis
SSID Sub-Session Identifier
UC Universal Composability
WKE Weak Key Exchange

Notation

∆ statistical distance
H∞ min-entropy

H̃∞ average conditional min-entropy
Ext extractor
Ext2 two source extractor

ii

A adversary/attacker
F ideal functionality
H, h hash function
Γ class of leakage functions
λ leakage
Λ leakage function
viewA the values retrieved by an adversary/attacker
ε, δ adversarial advantage
k security parameter
τ internal state of a scheme
Φ a LRS scheme
K key space
E ,V events
F finite field
GF group field
G group sampling algorithm
g group generator
p order of group, usually prime
G group
pub public Diffie-Hellman value
priv private Diffie-Hellman value
X, Y random variables
x, y group or set elements
Pr probability measure
poly(n) polynomial in n
negl(n) negligible in n
E expected value
R,N real and natural number
[n] the natural numbers {1, . . . , n}

Contents

Notation i

List of figures v

List of tables vii

1 Introduction 1

1.1 Roadmap . 4

2 Preliminaries 5

2.1 Definitions . 5

2.1.1 Statistical distance . 5

2.1.2 Entropy . 5

2.1.3 Extractors . 6

2.1.4 Universal Hash Functions 7

2.2 Perfect Security and Cryptographic Hardness Assumptions 7

2.2.1 The Random Oracle Model 8

2.3 Bounded-Retrieval Model . 9

2.4 Universally Composable Security 10

3 From Provable Security to Leakage-Resilient Cryptography 13

3.1 Provable Security . 13

3.2 Side-Channel Attacks . 14

3.2.1 Countermeasures . 16

3.3 Leakage-Resilient Cryptography 18

3.3.1 The Leakage Functions . 18

3.3.2 Continual Leakage Model 20

3.3.3 Bounded Memory-Leakage Model 21

3.3.4 Auxiliary Input Model . 22

3.3.5 Continual Memory-Leakage Model 23

iii

iv CONTENTS

4 Leakage-Resilient Storage 25

4.1 Introduction . 25
4.1.1 Memory Leakages - Previous Work 25
4.1.2 Our Contribution . 26
4.1.3 Preliminaries . 28

4.2 The Definition . 29
4.2.1 A Weaker Definition . 30

4.3 The Implementations . 31
4.3.1 Memory Divided into Two Parts 32
4.3.2 Functions that have small descriptions 34

4.4 Comparison with [81] . 38
4.5 Connection with the theory of compressibility of NP-instances. . . 38

5 Authenticated Key Exchange Implementation in the Bounded-

Retrieval Model 41

5.1 Introduction . 41
5.1.1 Problem . 41
5.1.2 Contribution . 43
5.1.3 Related works . 45

5.2 Implementation . 47
5.2.1 Weak Key Exchange . 47
5.2.2 Password-based Authenticated Key Exchange 51
5.2.3 Authenticated Key Exchange from Weak Key Exchange

and Password-based Authenticated Key Exchange 55
5.3 Analysis . 60

5.3.1 Weak Key Exchange . 60
5.3.2 Password-based Authenticated Key Exchange 66
5.3.3 Authenticated Key Exchange 70

6 Conclusion and future work 73

A Omitted Proofs 77

A.1 Proofs for Chapter 4 . 77
A.1.1 Proof of Lemma 1 . 77
A.1.2 Proof of Lemma 6 . 78

Bibliography 79

List of Figures

5.1 Diffie-Hellman Key Exchange Protocol 42
5.2 Man-in-the-middle attack in the Diffie-Hellman Key Exchange

Protocol . 42
5.3 Weak Key Exchange Protocol . 48
5.4 Password-Authenticated Key Exchange Protocol 53
5.5 Authenticated Key Exchange Protocol 56
5.6 Comparison between the values of t in the standard setting ε =

30 and in an higher level of security setting ε = 80, for file size
1GB ≤ n ≤ 50GB and leakage λ = 99% of n. 64

5.7 Experimental evaluation of the running time of the WKE (Figure
5.7(a)) and PAKE (Figure 5.7(b))protocols. Comparison between
the standard setting ε = 30 and an higher level of security setting
ε = 80, for file size 1GB ≤ n ≤ 50GB and leakage λ = 99% of n. . 65

5.8 Ideal functionality FCAuthPAKE: it is parametrizes by a security pa-
rameter k. It interacts with an adversary A and a set of parties
P1, . . . , Pn. (from [2]) . 67

5.9 Functionality FRO (from [2]) . 68
5.10 Functionality FIC (from [2]) . 69

v

List of Tables

5.1 Values of t and running time of the WKE and PAKE protocols,
in the standard setting ε = 30 and in an higher level of security
setting ε = 80, for file size 1GB ≤ n ≤ 50GB and leakage λ = 99%
of n. 64

vii

Chapter 1

Introduction

For long time, the design of cryptographic schemes was based mostly on heuristic
and a scheme was believed secure until someone was able to break it. Then the
cryptographers' task was to fix the scheme, mainly providing an ad-hoc solution
against the successful attack. These steps could be repeated several times and
clearly this approach cannot guarantee security against every possible attacks,
even completely new attacks, which should be the target of the design of secure
cryptographic schemes.

From the middle of the past century, modern cryptography introduces the
provable security, the idea to provide a formal description of the security and the
adversarial models, to capture all the possible adversarial behaviors, and then to
provide formal mathematical proofs of the security of a cryptographic scheme.
In this setting, a cryptographic scheme is usually modeled as a black-box, i.e.
an attacker can choose the input and observe the output of an execution of the
protocol but she cannot retrieve any information about the internal state of the
scheme.

In the last forty years, this approach developed very fast and attain to design
a large number of cryptographic schemes that can be shown to be provably se-
cure. Despite the mathematical proof of the security of such schemes, once they
were implemented on some physical devices, it turned out that several of them
have been broken. Indeed, by the end of the 90s, the cryptographers' commu-
nity starts to realize that the adversarial black-box model considered so far does
not take into account the possibility for an attacker to exploit the weakness of
the real physical implementation of a protocol, which can allow the adversary
to retrieve some extra leakage information, stepping out of the formalized model
and resulting in breaking the scheme. Such attacks, in which an adversary can
retrieve some leakage information during the execution of an implemented cryp-
tographic protocol, are called side-channel attacks. The study of these attacks
is changing the approach of the cryptographers' community to the design and

1

2 CHAPTER 1. INTRODUCTION

implementation of cryptographic schemes. Side-channel attacks exploit physical
measurements on real devices and for this reason they have been studied mostly
by the practitioners, who try to find countermeasures to the known attacks and
to exploit new attacks. Again, the proposed solutions are mostly ad-hoc, often
they come without a formal proof of security and cannot provide security against
all possible attacks.

In the last years, also the theoreticians began to study the problem of crypto-
graphic security in the presence of side-channel attacks, trying to formally model
this leakage information in the provable secure setting. As a result, a new field
was born: the leakage-resilient cryptography. In this area, the formal security
requirements of the provable security hold and, in addition to the black-box in-
teraction with the scheme, an attacker chooses some leakage functions, which
model the side-channel information, and retrieves the value of these functions
applied to the internal state of the cryptographic scheme during its execution
on a physical device. Clearly, the class of leakage functions has to be restricted
in some way, otherwise an attacker could obtain too much leakage information
and easily break any scheme, but, clearly, to be meaningful this class should still
cover most of the real world side-channel measurements.

Recently, several construction of cryptographic schemes in the leakage-resilient
cryptography were showed together with formal proofs of their security, in mod-
els which differ in the class of leakage functions considered or in the way the
leakage functions are applied to the internal state of the scheme. Some works
consider very restricted class of leakage functions, while other ones consider a
more general setting in which an attacker can choose any input-shrinking func-
tions, i.e. such that the length in bits of the output is much less than the size
in bits of the input. Furthermore, in some models the total amount of leakage
retrieved by an attacker is bounded while in other ones it is bounded only in
each time period but not in total (in this case, an update phase of the internal
state of the scheme is needed, as otherwise after some number of time period an
attacker could completely retrieve the entire internal state of the scheme).

The idea to reason about the partial key leakages by modeling them as input-
shrinking functions originates from the Bounded-Retrieval Model (BRM). Origi-
nally the BRM was proposed as a method for protecting against computer viruses
that may steal large amounts of data from the PCs: the main idea of the BRM
is to construct schemes where the secret key is large and to assume that the
adversary can retrieve the value of some input-shrinking functions applied to the
secret key. The main differences between this setting and the models for the
side-channel attacks come from the fact that the keys in the BRM are huge and
hence:

• one has to design schemes where the honest user does not need to frequently

3

process the entire secret key;

• one can allow that some part of the secret key leaks each time the scheme
is used.

Nevertheless in [68] it was observed that the BRM can be used to model the side-
channel attacks and recently Alwen et al. [7] showed how to construct leakage-
resilient public-key protocols in the BRM.

Leakage-resilient cryptography is growing very fast, providing a large number
of cryptographic schemes that are provably secure even after the implementation
on physical machines that may leak information. However, there is still a gap be-
tween the theoreticians' and the practitioners' point of view on this field, about
how to meaningful model real world side-channel measurements and on which as-
sumptions are not only meaningful in theory but also practical. A collaboration
between the two cryptographic community, the theoreticians and the practition-
ers, is needed to further develop the area: sharing the knowledge is the key for
better understand the side-channel attacks and to construct a provably secure
physically implementable cryptography.

In this thesis, we contribute to this emerging field of the cryptography by
studying the problem of secure data storage on hardware that may leak informa-
tion, introducing a new primitive, a leakage-resilient storage, and showing two
different constructions of such storage scheme provably secure against a class of
leakage functions that can depend only on some restricted part of the memory
and against a class of computationally weak leakage functions, e.g. functions
computable by small circuits, respectively. Our results come with instantiations
and analysis of concrete parameters. Furthermore, as second contribution, we
present our implementation in C programming language, using the cryptographic
library of the OpenSSL project, of a two-party Authenticated Key Exchange
(AKE) protocol, which allows a client and a server, who share a huge secret file,
to securely compute a shared key, providing client-to-server authentication, also
in the presence of active attackers. Following the work of Cash et al. [42], we
based our construction on a Weak Key Exchange (WKE) protocol, developed in
the BRM, and a Password-based Authenticated Key Exchange (PAKE) proto-
col secure in the Universally Composable (UC) framework. The WKE protocol
showed by Cash et al. uses an explicit construction of averaging sampler, which
uses less random bits than the random choice but does not seem to be efficiently
implementable in practice. In this thesis, we propose a WKE protocol similar
but simpler than that one of [42]: our protocol uses more randomness than the
Cash et al.'s one, as it simply uses random choice instead of averaging sampler,
but we are able to show an efficient implementation of it. Moreover, we formally

4 CHAPTER 1. INTRODUCTION

adapt the security analysis of the WKE protocol of [42] to our WKE protocol.
To complete our AKE protocol, we implement the PAKE protocol showed se-
cure in the UC framework by Abdalla et al. [2], which is more efficient than
the Canetti et al.'s UC-PAKE protocol [40] used in [42]. In our implementation
of the WKE protocol, to achieve small constant communication complexity and
amount of randomness, we rely on the Random Oracle (RO) model. However, we
would like to note that in our implementation of the AKE protocol we need also
a UC-PAKE protocol which already relies on RO, as it is impossible to achieve
UC-PAKE in the standard model [40].

In our work we focus not only on the theoretical aspects of the area, providing
formal models and proofs, but also on the practical ones, analyzing instantiations,
concrete parameters and implementation of the proposed solutions, to contribute
to bridge the gap between theory and practice in this field.

1.1 Roadmap

This thesis is organized as follows:

• Chapter 2 briefly introduces basic definitions and concepts used throughout
the thesis;

• Chapter 3 gives an overview on the state of the art of leakage-resilient
cryptography;

• Chapter 4 presents our leakage-resilient storage primitive and construc-
tions;

• Chapter 5 discusses our implementation of an Authenticated Key Exchange
protocol;

• Chapter 6 contains conclusion and future work.

Chapter 2

Preliminaries

In this chapter we briefly introduce some basic definitions and review some basic
concepts that are used in this thesis.

2.1 Definitions

2.1.1 Statistical distance

Definition 1 (Statistical distance). Given two random variables X0, X1 with
values in X , their statistical distance is defined as

∆(X0;X1)
def
=

1

2

∑
x∈X

|Pr [X0 = x]−Pr [X1 = x] |.

If a random variable X assumes values in {0, 1}n, then we let d(X)
def
=

∆(X;Un) be the statistical distance1 between X and the uniform distribution
Un over {0, 1}n. If ∆(X0;X1) ≤ ε we say that X0 and X1 are ε-close (or ε-
indistinguishable). We also define the conditional statistical distance given a ran-

dom variable Y as ∆(X0;X1|Y)
def
= ∆(X0, Y ;X1, Y) and d(X|Y)

def
= ∆(X, Y ;Un, Y).

2.1.2 Entropy

Definition 2 (Min-entropy). Given a random variable X, the min-entropy of X
is

H∞(X)
def
= min

x
(− log(Pr [X = x])) = − log(max

x
(Pr [X = x])).

1We will overload the symbols ∆(·) and d(·) and sometimes apply them to the probability
distributions instead of the random variables.

5

6 CHAPTER 2. PRELIMINARIES

Given two random variables X, Y , the conditional min-entropy of X given Y
is defined as

H∞(X|Y)
def
= Ey←YH∞(X|Y = y) = Ey←Y (− log(max

x
(Pr [X = x|Y = y]))),

where H∞(X|Y = y) is the min-entropy of X after learning the value y of Y .
However, this notion is not really useful from a cryptographic point of view.
For cryptographic applications Dodis et al. [64] introduced the notion of average
conditional min-entropy :

Definition 3 (Average conditional min-entropy). Given two random variables
X, Y , the average conditional min-entropy of X given Y is

H̃∞(X|Y)
def
= − log(Ey←Y (max

x
(Pr [X = x|Y = y]))).

2.1.3 Extractors

A randomness extractor is a function that, given a long source of size n with
high min-entropy and a short uniformly random seed, outputs a long sequence
of size m, with m < n, that is statistically close to uniform.

Definition 4 (Extractor). A (k, ε)-extractor is a function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

such that for every distribution X on {0, 1}n with H∞(X) > k the distribution
Ext(X,Ud) is ε-close to the uniform distribution on {0, 1}m.

In [44], Chor and Goldreich showed that it is not possible to use one function
to extract randomness from every single high min-entropy source but it is possible
from two independent high min-entropy sources. They introduced the two-source
extractor:

Definition 5 (Two source extractor). A (k0, k1, ε)-two source extractor is a func-
tion

Ext2 : {0, 1}n0 × {0, 1}n1 → {0, 1}m

such that for every two independent distributions X on {0, 1}n0 with H∞(X) > k0

and Y on {0, 1}n1 with H∞(Y) > k1 the distribution Ext2(X, Y) is ε-close to the
uniform distribution on {0, 1}m.

2.2. PERFECT SECURITY AND CRYPTOGRAPHIC HARDNESS

ASSUMPTIONS 7

2.1.4 Universal Hash Functions

Definition 6 (`-wise independent universal hash functions). A family {hs}s∈S
of functions hs : X → Y is called a collection of `-wise independent universal
hash functions if for every set {x1, . . . , x`} ⊆ X of ` elements, and a uniformly
random S ∈ S we have that (hS(x1), . . . , hS(x`)) is distributed uniformly over
Y`.

Several constructions of such functions exist in the literature. For example if
GF (2n) is the field with 2n elements, and for s = (s0, . . . , s`) ∈ GF (2n)`+1 and
every n′ ≤ n we define

hs(x) =

(∑̀
i=0

six
i

)
1...n′

(where z1...n′ denotes the set of n
′ first bits of z) then {hs} is a collection of `-wise

independent universal hash functions.

2.2 Perfect Security and Cryptographic Hardness

Assumptions

In modern cryptography, to design a cryptographic scheme one has to formally
define a security model and an adversarial model. A scheme is called information-
theoretically secure, or perfect secure, if it is mathematically proven secure against
a computationally unbounded adversary. However, most of the cryptographic
constructions consider only �efficient� adversaries, modeled by probabilistic poly-
nomial-time (PPT) Turing machines, which use some randomness and terminate
after a polynomial number of steps, in the length of its input, or by bounded
size circuits, where the size of a circuit is the number of its logic gates. This
approach is called computational security and even if it is theoretically weaker
than perfect security, it suffices for all practical purposes.

Computational security is based on notions from complexity theory and con-
siders all the parameters involved in the computations as functions of a security
parameter k, chosen by the honest parties when they run the protocol. Then, in
this setting a scheme is formally proven secure against an adversary with run-
ning time polynomial in k and which can break the scheme only with negligible2

probability in k, with large enough value of the security parameter k.
Most of the security proofs for modern cryptographic protocols rely on the

assumption that some problems are hard to solve for computationally bounded

2A function f : N → R is negligible in k if for every polynomial poly(·) there exists an
integer N such that for all k > N it holds that f(k) < 1/poly(k).

8 CHAPTER 2. PRELIMINARIES

adversaries. Informally speaking , these proofs proceed by reduction, showing
that if there exists an efficient (computationally bounded) adversary who breaks
the scheme with no-negligible probability, then it is possible to efficiently use
this adversary to break the problem that was assumed to be hard. Several of
these hard problems come from number theory, as factoring prime numbers and
computing discrete logarithms, and cryptographers developed several variety of
assumptions based on them that are believed to be hard to solve in polynomial
time. This model, in which the security proofs are based on some assumptions
on the computational power of an adversary, is called the standard model.

We briefly define two standard assumptions that are used throughout this
thesis. Let G(1k) be a group sampling algorithms which outputs a tuple (G, p, g),
where G is a cyclic group of order p and g ∈ G is a generator of G.3

Definition 7 (Computational Diffie-Hellman (CDH) problem). Let x, y uni-
formly distributed over Zp and (G, p, g)← G(1k). The CDH problem is hard for
G if for every adversary A there exists a negligible function negl(·) such that

Pr [A(G, p, g, gx, gy) = gxy] ≤ negl(k).

Definition 8 (Decisional Diffie-Hellman (DDH) problem). Let x, y, z uniformly
distributed over Zp and (G, p, g) ← G(1k). The DDH problem is hard for G if
for every adversary A there exists a negligible function negl(·) such that

|Pr [A(G, p, g, gx, gy, gxy) = 1]−Pr [A(G, p, g, gx, gy, gz) = 1] | ≤ negl(k).

In other words, given the tuple (G, p, g) and the randomly chosen gx and gy,
the CDH problem is to compute the Diffie-Hellman value gxy while the DDH
problem is to distinguish the Diffie-Hellman value gxy from a randomly chosen
group element gz.

2.2.1 The Random Oracle Model

Several of the cryptographic schemes proven secure in the standard model are not
practical and there exist cryptographic primitives that cannot be proven secure in
this model. For these reasons, Bellare and Rogaway [14] introduced the random
oracle (RO) model, an idealized model in which all the parties have access to
an �oracle�, a random function that outputs a uniformly random element for
every input provided by the parties, but the parties have no knowledge about its
internal behavior.

3In practice, prime order groups are desirable.

2.3. BOUNDED-RETRIEVAL MODEL 9

In practice, the random function is instantiated by a cryptographic hash
function (as SHA-1), i.e. each party, instead of querying the oracle with a value,
simply computes the cryptographic hash function of that value on its own. How-
ever, a proof in the RO model does not imply that the scheme will remain secure
when the random oracle is implemented in practice. Indeed, some schemes (even
if quite artificial) have been presented that are provably secure in the random
oracle model but are insecure for any choices of the cryptographic hash function
used to replace the oracle (see for example [37, 38]). Despite this limitation, a
formal proof for a cryptographic scheme in the RO model could provide mean-
ingful information about the scheme and its properties and could help to develop
better schemes.

The Ideal Cipher Model. Another idealized model is the ideal cipher (IC)
model ([78, 108, 50, 22]). In this model there exists a public random block cipher
and all the parties can make encryption and decryption queries to it. Also in
this model, some schemes have been showed that are secure in the IC model but
becomes insecure once the ideal cipher is replaced by a real block cipher (see
[21]). Nevertheless, as noted in [21], a proof in the IC model can still be useful
as �it shows that a scheme is secure against generic attacks, that do not exploit
specific weaknesses of the underlying block cipher�. Coron et al. [46, 47] showed
that the RO model and the IC model are equivalent.

2.3 Bounded-Retrieval Model

In [120] and [121], Maurer introduced the Bounded-Storage Model (BSM), which
only assumes a bound on the storage capacity of an attacker, instead of the
classical approach to bound her computational power. In particular, the BSM
assumes that a large random string is available for a limited amount of time to all
the parties who run the cryptographic scheme, but the quantity of information
that an attacker can store is less than the size of the string and then she can
only save partial information about it. Several works ([9, 73, 117, 151]) showed
that in this setting the honest parties can generate, using a shared secret short
string, a very long string such that an attacker has no information about it.

More formally, the parties share a short string key chosen uniformly at ran-
dom from a key space K and a long random string R ∈ R (a randomizer) is
available to all the parties. In order to obtain a string much longer than the
shared one, all the parties apply a key-expansion function f : R×K → {0, 1}n,
with |R| � n � |key|, to compute the expanded key f(R, key). Clearly, the
function f has to use only a small portion of R, as in this way the honest parties
can compute it efficiently. An adversary can apply an arbitrary input-shrinking

10 CHAPTER 2. PRELIMINARIES

function Λ to R, i.e. Λ(R) < |R|, and store the result. After this step, the adver-
sary cannot access anymore the string R. A key-expansion function f is secure in
the BSM if, with high probability, an adversary gains no information about the
expanded key f(R, key) even conditioned on the knowledge of Λ(R) and key.4

In this model, several schemes were proven information-theoretically secure,
as encryption ([9, 73, 117, 151, 53]) and key-agreement ([34, 72]).

Based on the BSM, the Bounded-Retrieval Model (BRM) was introduced in-
dependently by Dziembowski [68] and Di Crescenzo et al. [51]. In this model, the
parties share a huge (several Gygabytes) random secret key K and an adversary
is allowed to perform any computation on it but the quantity of information that
she can retrieve is bounded, i.e. it is less than |K| but it can even consist of some
Gygabytes. This model captures the setting in which one wants to protect secret
keys and to preserve security of cryptographic schemes on a computer infected
(for a limited amount of time) by a malware, like a virus, which can communicate
only a bounded amount of information to a malicious user, after performing any
efficient computation on the entire internal state of the infected machine.

More precisely, an adversary can apply any input-shrinking function Λ to K
and retrieve the result and after this step it is assumed that the parties are able
to remove the malware program from their machine and then they use only a
small portion of their shared secret keyK to perform some cryptographic scheme.
Informally, a scheme is secure in the BRM if the secret key K remains indistin-
guishable from random to an adversary even conditioned on the knowledge of
the retrieved information Λ(K).

The assumption that an adversary cannot retrieve more than some Gygabytes
is quite practical as an honest user should be able to notice whether her machine
is transmitting such huge amount of information to the external world, indepen-
dently by her actions.

In the past years, authentication schemes [68, 51, 42] and secret-sharing [74]
were proven secure in the BRM. Recently, Alwen et al. [7, 6] showed how to build
the first public-key primitives (identification schemes, signatures, authenticated
key agreement and encryption) in the BRM based on a variety of assumptions.

2.4 Universally Composable Security

In [35] Canetti introduced the Universally Composable (UC) framework in which
security is based on an ideal functionality F , which can be viewed as a trusted

4One assumes that the adversary knows key to prove a strong result but in practice key is
kept secret by the parties.

2.4. UNIVERSALLY COMPOSABLE SECURITY 11

party that interacts with a group of players to compute some given function f .
The functionality F receives the input of each party, computes f on these values
and gives back the output to the players. Hence, in this setting an attacker can
only retrieve the data of the corrupted players but security is guaranteed for the
honest parties.

Informally, a protocol proven secure in the UC framework remains secure
even when used in arbitrary �environments�, i.e. the behavior of a protocol which
implements an �ideal functionality�, under an adversarial attack, is not distin-
guishable from the behavior of a simulated attack on the �ideal functionality�, by
an �environment� that controls the parties who run the protocol, choosing inputs
and observing outputs, during an attack. By this property, an �ideal functional-
ity� can be used in any construction and then it can be replaced by an UC secure
protocol, guaranteeing that the security analysis of the construction still holds.

In the UC framework there may exist several copies of the ideal functionality
F running at the same time. Each copy has a unique session identifier (SID).
The original UC theorem analyzes the security of a single protocol, but it does
not consider the case in which several protocols share state and randomness.

In [41] Canetti and Rabin introduced the UC with joint state, which guar-
antees security in case different protocols share some common state. Informally,
they define a multisession extension F∗ of F , which runs several executions of
F . Each copy of F is identified by a sub-session identifier (SSID).

Chapter 3

From Provable Security to

Leakage-Resilient Cryptography

By the end of the 70s, modern cryptography introduced a new approach to the
design of cryptographic schemes, requiring formal definitions and precise assump-
tions to achieve mathematical proofs of security in well-defined and meaningful
models.
Previously, the security of a cryptographic scheme was based mostly on heuris-
tic: a scheme was believed secure until someone was able to break it. Once a
scheme was broken, the designers tried to fix it using an ad-hoc solution against
the attack that successes in breaking the scheme. Such evolution of the cryp-
tographic schemes is clearly dangerous: even providing security against all the
known attacks might be not enough as there could be some adversarial behaviors
not discovered yet that in this way are not considered in the design phase.

3.1 Provable Security

In 1984, Goldwasser and Micali [88] introduced the idea to design a cryptographic
scheme by formalizing the adversarial model and the security model and then
formally proving that, under some well-defined assumptions (see Section 2.2), no
adversary can break the security definitions of the scheme. Such approach has
been later called provable security as the cryptographic protocol now comes with
a mathematical proof of their security.
Provable security models a cryptographic protocol as a black-box : an adversary
can only know, or choose, the input and see the output of the protocol without
obtaining any information about the internal state of the protocol during its
execution. The security model of the protocol formally describes the interaction
between the adversary and the black-box protocol, specifying what actions she

13

14
CHAPTER 3. FROM PROVABLE SECURITY TO LEAKAGE-RESILIENT

CRYPTOGRAPHY

can perform and what she can learn. A security model can consist of a game
between the adversary and the protocol or it can be simulation based. In the
former case, the attack of the adversary is formalized by a game and the prob-
ability of the adversary to win such game represents the probability to break
the protocol, hence the protocol is secure if this probability is negligible. In the
simulation based security model, the behavior of a protocol under an adversarial
attack is not distinguishable from the behavior of a simulated attack, in which
a simulator with no access to the internal state of the protocol has to simulate
the adversary. In this way, one shows that whatever the adversary learns from
her attack can be derived by observing the execution of the protocol without
knowing anything about its internal state. To show that a protocol is secure in
this setting, one has to define a simulator such that its output distribution is
indistinguishable from that one of the adversarial attack.

Despite the strong requirements of the provable security, from the mid-90s
cryptographers began to discovered that once a secure protocol, even with a
formal security definition and mathematical proof of security, is implemented
on a physical device, it turns out that such implementation could be not secure
anymore. Indeed, an adversary who wants to break the protocol can try to
exploit the weakness of the physical device, which can leak some information
about the implemented protocol that are not considered in the black-box model.
An attack of this type, in which the adversary exploits the leakage information of
a device during the execution of a cryptographic protocol implemented on it, is
called a side-channel attack (in contrast to �main-channel� attacks which exploit
the device as a black-box).

3.2 Side-Channel Attacks

In 1996, Kocher [112] showed that many implementations of secure cryptographic
protocols can be broken by a timing attack, in which the attacker can measure
the amount of time required by the private key operations during the execution
of the protocol. The time required to compute some operations can depend on
the secret key and the input of the protocol, therefore if an adversary is able to
make reasonably accurate timing measurements on a vulnerable system then she
could break the protocol with a computationally inexpensive attack.
Clearly, the measurements can contain some noise that could make the retrieved
information useless to an attacker or could make hard to extract useful infor-
mation from it. In his work, Kocher showed a statistical method to get rid of
this problem, allowing the adversary to detect errors in the measurements and
correct them (at the cost of a more expensive amount of resources used by the

3.2. SIDE-CHANNEL ATTACKS 15

attacker).
Moreover, Kocher noted that even if the protocol is implemented introducing a
timer or just no meaningful operations to delay the response of the operations
performed during the execution of the protocol (at the cost to slow down the ex-
ecution, of course), an adversary can study the power consumption of the system
to detect the real duration of any operation, as the power used by the protocol
computation and the added operations (or during the delay) could be different,
potentially allowing the attacker to still perform a timing attack.

In 1999, Kocher et al. [113] studied methods to analyze the power consump-
tion measurements made on a tamper resistant device to obtain information
about the secret data of the device. They introduced the power analysis attack,
which exploits the correlation between the power consumptions and the opera-
tions performed during the execution of a cryptographic protocol on the device.
The power analysis attack is the most studied side-channel attack and it is fre-
quently used in practice, as it is relatively simple to perform but still it makes
possible to completely discover the secret data of the system.
There exist two types of such attacks: simple power analysis (SPA) and diffe-
rential power analysis (DPA).
SPA examines few power traces, which represents the current used by the system
over the time, by visual inspection. Such analysis requires a limited access to the
device but it needs the knowledge of the implementation of the device and works
better if the operations executed on the device during the measurements are
performed sequentially and the power consumption of every operation is known.
Clearly, for an attacker could be hard to obtain such information about the de-
vice and the operations.
DPA does not require to know the implementation of the analyzed device and
retrieves a small part of the secret data by studying the relation between power
consumption and the operations performed at a given moment. To retrieve the
entire secret key, the attacker has to repeat the attack choosing a different point
in the time in which the computation depends on a different part of the secret
data. DPA works even in presence of noise in the power traces, but it needs
several measurements, therefore, in contrast to the SPA, it requires the control
of the device for some time.

One of the most famous example of a successful side-channel attack, based
on power analysis, is that one against the KeeLoq cipher [76], used in a remote
keyless system for cars, which has been completely broken.

Other possible side-channel attacks exploit different leakage of the physical
device, e.g. by measuring, during the execution of the target protocol, electro-
magnetic radiations [82, 134] and acoustic signals [144]. All these attacks are not
invasive as they do not tamper the device but simply observe and measure the

16
CHAPTER 3. FROM PROVABLE SECURITY TO LEAKAGE-RESILIENT

CRYPTOGRAPHY

leakage from it.
In contrast, invasive attacks [20, 25] allowed the adversary to observe �inside�
the device, e.g. by measuring the power consumption directly from the wires,
performing a so-called probing attack, or reading directly from the memory the
contents of the cells, in a cold boot attack.
Probing attack, in which it is possible to simply read the contents carried by some
wired of the device, required a rather complex tools to perform measurements,
while cold boot attacks rely on the fact that dynamic random-access memory
(DRAM) retains its contents for several seconds even after it is disconnected
from power or from the machine on which is working. In [91], Halderman et al.
showed that the information on the DRAM persist for minutes or even hours, if
the device is frozen.

In the fault attacks [8, 25, 146] it is possible to introduce faults during the
execution of the protocol on the device analyzed, e.g. by modifying the temper-
ature, using radiation or changing some internal setting of the device as clock or
power. Such attacks are really powerful as even only one single fault, a single
change inserted in the computation, can allow an adversary to completely break
an implementation of a protocol.

3.2.1 Countermeasures

A countermeasure against side-channel attacks tries to make the measurements
of some physical properties of the device, during the execution of protocols on
it, independent from the computation or to make harder to perform such mea-
surements for an attacker.

On the hardware level, side-channel countermeasures do not depend on some
specific implementation but rather they try to decrease the quantity of informa-
tion that an attacker is able to retrieve in a measurement or is able to efficiently
extract from the observed leakage of the physical device. To protect the device
and to limit the physical access to it and its leakage, special hardware is used to
shield its components but a good solution for an attack could not work properly
against another type of side-channel, weakening the countermeasures.
Another countermeasure consists in adding noise to the adversarial observations
of the device, e.g. by randomizing the power consumption of the system or the
execution of the protocol's operations (inserting interruptions or dummy instruc-
tions). An adversary would then need to perform a larger amount of measure-
ments to recover a better signal, increasing the cost of the attack.

3.2. SIDE-CHANNEL ATTACKS 17

At logical level, countermeasures to power analysis1 are based on the con-
cepts of hiding and masking (or blinding) [77, 123, 149], which try to make the
power consumption of a device independent of the values computed during the
execution of a protocol on that device.
Hiding techniques try to make the power consumption of a device constant but
then a drawback is that the implementation always uses more power than what it
needs in the computation, making this approach not practical on some resources-
bounded device.
Masking techniques try to avoid correlation between the values computed during
the computation of a protocol and the computation itself. In a circuit, the inter-
mediate values computed by logical gates are bits and it is possible to mask them,
for example, by xoring them with a random mask, generated by the circuit and
potentially different for each invocation. The logical gates will then use masked
values and corresponding masks instead of single bits and, as the masked bit is
not correlated to the original one, the total power consumption is independent of
the intermediate values of the computation, unless an attacker retrieves both the
masked value and the mask, which allow her to simply know the corresponding
original bit.
The number of random masks used in the implementation affects the efficiency of
the countermeasure and the resistance to the attacks [43]: a single mask does not
influence the efficiency of the operations performed but can easily be identified
from the attacker by visual inspection of the power traces [141], while the best
resilience to attacks is obtained by using a mask for each value but it is not
efficient and then the system needs to deal with the problem of generating a
large number of random masks.
The masking technique is applied also on the algorithmic level, to make the power
consumption independent of the intermediate value of specific cryptographic pro-
tocols [90, 150, 129, 142].

A strong side-channel countermeasure at algorithmic level consists of updat-
ing the secret key used by the cryptographic protocol, for example, by simply
applying to the key a cryptographic hash function, after every fixed number of
operations or fixed amount of time. As a drawback, such technique requires an
interaction between the parties who run the protocol with the same key to exe-
cute the update and needs to study also the leakage that can be measured by an
attacker during the update phase.

In real implementations, some of the side-channel countermeasures introduced
above are combined together, in particular logical and algorithmic techniques
work under the assumption that an attacker is not able to retrieve the entire
internal state of a device in a single measurement and the hardware countermea-

1See [119] for a complete treatment of power analysis attacks and countermeasures.

18
CHAPTER 3. FROM PROVABLE SECURITY TO LEAKAGE-RESILIENT

CRYPTOGRAPHY

sures are the only ones which guarantee such requirement in practice.

3.3 Leakage-Resilient Cryptography

As illustrated in the previous section, the side-channels attacks and countermea-
sures are studied mostly by the practitioner's cryptographic community, which
try to find new attacks and then to propose new countermeasures. Such ad-hoc
approach produces cryptographic implementations that are secure against a some
particular side-channel attacks, even all the known attacks, but they do not pro-
vide security against every kind of possible attacks, even attacks not known yet.
Moreover, such solutions often do not come with a formal proof of their security,
in contrast with the modern cryptography approach and the formal models of
the provable security.

In the last years, the theoretician's cryptographic community began to focus
on the side-channel attacks, on how to incorporate them in the models already
known and on how to design new cryptographic schemes that are provably secure
in this settings. The result of this collaboration between practitioners and the-
oreticians is the leakage-resilient cryptography, which deals with the problem of
designing cryptographic protocols that are provably secure even after the imple-
mentation on machines that may leak information. In this setting, the leakage of
a physical device is modeled by a class of functions and the formal proof of the
security of a scheme is based on some assumptions on the physical implementa-
tion of the scheme. Clearly, it should be simpler to implement such assumptions
than to build a black-box version of the scheme.

3.3.1 The Leakage Functions

In the leakage-resilient cryptography, an attacker can choose some functions from
a large well-defined class and retrieve the value of such functions applied to the
internal state of the implemented scheme during the computations, for which
she can choose the input and observe the output, as in the black-box approach.
The class of functions used to model the leakage has to be very realistic, i.e. it
should cover all the attacks that an adversary can launch in the real world, but
it has to be restricted in some way, as the class cannot contain any functions.
For example, the leakage functions class cannot contain the identity function as
otherwise an attacker can use it to trivially know the entire internal secret state
of an implemented scheme and then, of course, any hope for security is gone.
Limiting the class of functions that an attacker can apply to retrieve side-channel
information from a physical device makes sense also from the practical point of
view. Indeed, an adversarial physical measurement usually consists of several

3.3. LEAKAGE-RESILIENT CRYPTOGRAPHY 19

megabytes of information but many real attacks compress this measurement and
exploit only a small fraction of the retrieved leakage. Moreover, most of the
measurements could not reveal the secret state of a scheme to an attacker, as the
measurements could contain noise or it could be computationally hard for the
attacker to extract meaningful information from such measurements.
The results in this area can be categorized according to the class of leakage func-
tions that the scheme covers: some works consider very restricted classes (e.g. in
[98] the model assumes that the adversary can simply read-off some wires that
represent the computation), while other ones consider more general leakages. A
common general restriction on the class of functions used to model the leakage is
to allow the adversary to choose any input-shrinking function, i.e. such that the
length in bits of the output is much less than the size in bits of the input, the
secret state in our case, which bounds the amount of leakage that the adversary
can retrieve during an attack (e.g. see [75, 5, 7, 127, 131, 80]).
Some works ([75, 127, 131, 109, 159]) consider the possibility to relax this restric-
tion by arguing that for their security proof it is enough to require that (a variant
of) the min-entropy of the secret state of the scheme does not decrease too much
conditioned on the leakage.2 In this setting, there is not a limit on the amount
of leakage that an attacker can retrieve but the restriction is less intuitive than
simply bounding the leakage and it is not clear whether this approach is feasible
in practice.

Another way to restrict the leakage consist to consider functions that are
computationally bounded, e.g. functions computable by circuits of small size, or
functions that are noisy, i.e. such that their output contains some noise. Such
restrictions model several practical side-channel attacks, as allowing the adver-
sary to choose any efficient functions seems to not always fit the real world.
In Chapter 4, we consider the problem of how to securely store a secret on a de-
vice that may leak information, introducing a new primitive, a leakage-resilient
storage (LRS), and we show a construction of LRS which implies security in a
computationally bounded leakage functions setting, in which, for example, the
attacker can choose functions computable by circuits of a small size (see Section
4.3.2 for more details).

An attacker can choose the leakage functions adaptively or non-adaptively:
in the former case the functions are chosen during the attack and the choice of
each function is based on the knowledge of the outputs of the functions already
applied, while in the latter case all the functions are chosen before starting the
attack. Most of the works in this area consider adaptive adversaries, as this
scenario is theoretically stronger then the non-adaptive one, but it can be hard

2As for min-entropy, λ bits of leakage cannot decrease it by more than λ bits.

20
CHAPTER 3. FROM PROVABLE SECURITY TO LEAKAGE-RESILIENT

CRYPTOGRAPHY

to realize adaptivity in practice, as the leakage functions are often determined
by the device and the measurement equipment.

3.3.2 Continual Leakage Model

The seminal work of Micali and Reyzin [124] introduced the framework of physi-
cally observable cryptography, the first formal model for the side-channel attacks.
They observed that several provable security cryptographic schemes do not pro-
vide security anymore in the presence of leakage and proved the security of the
implementation of some already known cryptographic schemes under some as-
sumptions3 on the physical world and the side-channel attacks.
The most important assumption stated in [124] is only computation leaks infor-
mation, in which an attacker retrieves leakage information only from the internal
state of a cryptographic scheme used in the computation for each time period
(or each invocation of the scheme), while the parts of the internal state that are
not accessed do not leak any information in that time period (or invocation). In
this setting, even if the leakage in each time period has to be restricted in some
way, the overall amount of information that an attacker can retrieve during the
entire lifetime of the system is unbounded. Clearly, to achieve any security in
this model, called the continual leakage model as a scheme can leak continually,
the secret data of the system have to be updated periodically, to avoid that an
attacker could retrieve too much information about them (as the total leakage is
unbounded).
The assumption that the parts of the system's memory that are not involved
in the current computation do not leak any information turned out to be not
satisfied by several physical implementations, for example, the cold boot attack
[91] showed that DRAM leaks information even if there is not computation on
it and some practical attacks on not accessed memory were also demonstrated
in [140]. Therefore, to produce secure schemes in this model one has to check
whether the physical device on which the scheme is implemented satisfies the
�only computation leaks information� assumption.
For this reason, some works (e.g. [75, 131, 109, 70]) try to relax this restriction by
assuming that the part of the system's memory used and the part of the memory
not used during the computation, leak independently. In this setting, in each
time period an adversary chooses two functions and retrieves the value of one
function applied to the active part of the system's memory in that time period
and the value of the other function applied to the passive part of the memory.
Then, an attacker can combine the information obtained from the two different

3Micali and Reyzin referred to these assumptions as �axioms� but some of them turned out
to not hold for many real devices.

3.3. LEAKAGE-RESILIENT CRYPTOGRAPHY 21

parts of the memory to evaluate a function of the global memory, in particular
she can compute any linear combination of the retrieved leakage. However, re-
cent works (e.g. [147]) showed that also this weaker restriction does not model
some non-linear physical leakage.

In the continual leakage model, stream ciphers [75, 131], digital signature
schemes [80], pseudorandom functions and permutations, in the non-adaptive
setting [65], and public-key encryption, under some non-standard assumptions
[109], have been built and formally proven secure.
Moreover, some general compilers have been proposed to securely realize any
cryptographic primitives in this model by transforming any circuit in a leakage-
resilient one [81, 100, 89], assuming the possibility to use some (simple) leak-
free hardware components. These compilers represent a theoretical result of
feasibility but they are rather inefficient in practice.
Recently, Dziembowski and Faust [70] proposed an extension in this model of
the leakage-resilient storage primitive introduced in the Chapter 4 of this thesis,
allowing for the refreshing of the stored data, assuming that different parts of
the memory leak independently and using some simple leak-free components,
and showed an efficient implementation of a public-key primitive based on their
scheme.

3.3.3 Bounded Memory-Leakage Model

As showed in the previous section, assuming some restrictions on the type of
leakage of a system's memory is controversial from a practical point of view. For
this reason, the bounded memory-leakage model, complementary to the continual
leakage model, has been introduced by Akavia et al. [5]. In this model, an at-
tacker can retrieve side-channel information from the entire system's memory (for
this reason such an attack is also calledmemory attack) but the overall amount of
leakage is bounded (as the schemes built in this model does not provide methods
to refresh their secret data). As for the previous model, the leakage is modeled
by allowing the attacker to choose some functions from a large and well-defined
class of functions, which should cover all the realistic side-channel attacks. How-
ever, the restriction of the amount of leakage that an attacker can retrieve during
the entire lifetime of the system does not allow to model several practical attacks
based on long term observation of the device with many measurements over time.

One of the first works in this model is that one of Ishai et al. [98], which
deals with the problem of building general compilers for transforming a circuit
in a new one, secure against an attacker who can read from a bounded number
of wires during the computation.

22
CHAPTER 3. FROM PROVABLE SECURITY TO LEAKAGE-RESILIENT

CRYPTOGRAPHY

Recently, in [5], the authors showed that some known provably secure schemes
[137, 84] remain secure in the bounded memory-leakage model, under the same
original assumptions.
In the last years, several cryptographic primitives have been formally proven
secure in the bounded memory-leakage, as digital signature, in the random or-
acle model [7] and in the standard model [106, 58]4 and public-key encryption
[127, 7, 87, 29, 58].
In Chapter 4, we show a construction of a leakage-resilient storage, a way to
securely store data on a device that leaks information, and prove that it is
information-theoretically secure in the bounded memory-leakage, where the re-
striction on the leakage functions consists in allowing the adversary to choose
functions that are computationally weak, as for example, functions computable
by circuits of small size (see Section 4.3.2 for more details).

3.3.4 Auxiliary Input Model

Dodis et al. [59] relaxed the assumptions on the leakage of the bounded memory-
leakage model and introduced the auxiliary input model, in which �the leakage is
not necessarily bounded in length, but it is (only) assumed to be computation-
ally hard to recover the secret data from the leakage�. As this model extends the
bounded memory-leakage model, it is assumed that all the system's memory can
leak, even the part not accessed during a computation.
This model covers a class of functions larger than the class considered in the
bounded memory-leakage model, as the output of the leakage functions could be
longer than the secret data size, and can be modeled using functions that are
computationally hard to invert, i.e. such that given the leakage (the output of
the function) a polynomial time adversary cannot efficiently compute the secret
data of the scheme (the corresponding input of the function).

In [59], the authors showed a symmetric-key encryption scheme secure against
exponentially hard to invert functions while Dodis et al. [56] and Brakerski
and Goldwasser [29] showed public-key cryptographic schemes which are secure
against sub-exponentially hard to invert functions.

The minimal assumption on the leakage of the auxiliary input model accu-
rately fits the real world side-channel attacks as usually in practice the most
difficult step in the measurements is the extraction of useful information, but

4In [106], Katz and Vaikuntanathan showed two constructions: one inefficient and another
efficient but only one-time. In [58], Dodis et al. showed the first efficient digital signature
scheme in the standard model in the bounded memory-leakage setting.

3.3. LEAKAGE-RESILIENT CRYPTOGRAPHY 23

there are some cryptographic primitives that cannot be implemented in such
model, as, for example, digital signature (see e.g. [79] for more details).

3.3.5 Continual Memory-Leakage Model

In 2010, Dodis et al. [57] and Brakerski et al. [30] concurrently introduced the
new continual memory-leakage model, which combines the best features of both
the continual leakage model and the bounded memory-leakage model: all the
system's memory leaks and the amount of leakage that an attacker can retrieve
is bounded only in each time period but it is unbounded during the entire life-
time of the system. As for the continual leakage model, secure schemes in this
model have to deal with some methods to periodically update the secret data of
the system.

In this model, Boyle et al. [28] constructed a digital signature scheme and
several public-key cryptographic primitives have been proposed [57, 30, 115, 114].
Furthermore, Dodis et al. [63] introduced a method to securely store (and refresh)
data on multiple physical devices which continually leak information about their
entire internal state and showed a public-key encryption scheme based on it.
However, all these schemes rely on non-standard assumptions or only allow for
small fraction (constant or logarithmic) amount of leakage during the refreshing
process of the secret data.

Chapter 4

Leakage-Resilient Storage

In this chapter we introduce a new primitive, a leakage-resilient storage, which
can be viewed as a secure storage scheme in the model where the physical mem-
ory may leak some side-channel information. This work has been presented at
Security and Cryptography for Networks (SCN) 2010 and is a joint work with
Stefan Dziembowski and Daniele Venturi [49].

4.1 Introduction

Some of the most devastating attacks on cryptographic devices are those that
break the actual physical implementation of the scheme, not its mathematical
abstraction. These, so-called side-channel attacks, are based on the fact that the
adversary may obtain some information about the internal data of the device
by observing its running-time [112], electromagnetic radiation [134, 82], power
consumption [113], or even sound that the device is emitting [144] (see [133, 77]
for more examples of such attacks).

4.1.1 Memory Leakages - Previous Work

Over the last couple of years there has been a growing interest in the design
of schemes that already on the abstract level guarantee that their physical im-
plementation is secure against a large well-defined class of side-channel attacks
(the pioneering paper in this area was [124]). The main idea is to augment the
standard security definition by allowing the adversary to learn the value of a
chosen by her leakage function Λ on the internal data τ used by the crypto-
graphic scheme. The results in this area can be categorized according to the
class of leakage functions Λ that the model covers. Some papers consider very
restricted classes (e.g. in [98] the model assumes that the adversary can simply
read-off some wires that represent the computation), while other ones consider

25

26 CHAPTER 4. LEAKAGE-RESILIENT STORAGE

more general leakages - e.g. [5] allow the adversary to choose any function Λ that
is input-shrinking (i.e. such that |Λ(τ)| � |τ |).

Another popular paradigm is to assume that only computation leaks informa-
tion, i.e. the memory cells that do not take part in the computation (in a given
time period) do not leak any information. The first paper to state this assump-
tion is [124] (where it is stated as �Axiom 1�, page 283), and the other papers
that use it are [75, 131]. The schemes of [75, 131] are actually secure even if the
total amount of information that leaks is greater than the memory size (this is
possible since the memory contents is evolving during the computation). The
other approach [5, 127, 106, 59, 56] is to assume that the memory may simply
leak information, independently on the computation performed.

It may be questioned if the �only computation leaks information� paradigm is
really relevant to the attack that the adversary can perform in real-life. In many
situations memory may actually leak information, even if it is unaccessed. First
of all, in modern computer systems it is hard to guarantee that a given part of
memory really never gets accessed (for example the memory may be refreshed or
moved to cache, etc.). Some practical attacks on unaccessed memory were also
demonstrated in [140]. More recently a class of cold boot attacks relying on the
data remanence property was presented in [91].

A natural question to ask is whether there exist methods for storing data
securely in the memory that may leak information. This is the main subject of
this chapter.

4.1.2 Our Contribution

In this chapter we introduce a new primitive, that we call leakage-resilient stor-
age, which can be viewed as a secure storage scheme in the model where the
physical memory may leak some side-channel information. A scheme like this
consists of two poly-time algorithms Encode and Decode, where the encoding
algorithm Encode takes as input a message m and produces as output a string

τ
def
= Encode(m), and the decoding algorithm Decode is such that we always have

Decode(Encode(m)) = m (observe that these algorithms do not take as input any
secret key).

Informally speaking, in the security definition we allow the adversary to adap-
tively choose a sequence of leakage functions Λ1, . . . ,Λt, and learn the values of

Λ1(τ), . . . ,Λt(τ).

We require that the adversary, after learning these values, should gain essen-
tially no additional information on m (this is formalized using a standard indis-
tinguishability game, see Section 4.2 for details). We assume that the Λi's are

4.1. INTRODUCTION 27

elements of some fixed set Γ (that will be a parameter in the definition). Obvi-
ously, the larger Γ, the stronger is our definition, and we should aim at defining
Γ in such a way that it covers all the attacks the adversary can launch in real-life.
All the Γ's that we consider in this chapter contain at least the set of functions
that read-off the individual bits of τ , hence we need to require that

t∑
i=1

|Λi(τ)| < |τ |, (4.1)

as otherwise the functions Λi could be chosen in such a way that (Λ1(τ), . . . ,Λt(τ)) =
τ . This is essentially the input-shrinking property that, as discussed above, was
already used in the literature.

LRS can also be viewed as a generalization of the All-Or-Nothing Trans-
form (AONT) introduced in [139]. Indeed, the standard definition of AONT
requires that it should be hard to reconstruct a message m if not all the bits
of its encoding Encode(m) are known. LRS is defined more generally, with re-
spect to a class Γ of functions. The security definition of LRS requires that
it should be hard to reconstruct m even if some values Λ1(Encode(m)), . . . ,
Λt(Encode(m)) are known (where Λ1, . . . ,Λt ∈ Γ), as long as the total length
of Λ1(Encode(m)), . . . ,Λt(Encode(m)) is smaller than some parameter λ. There-
fore, AONT is a special case of LRS, where the leakage functions are projections
of the individual bits.

Obviously, if we go to the extreme and simply allow the adversary to choose
any (poly-time) functions Λi that satisfy (4.1) then there is no hope for any
security, since the adversary could always choose Λ1 in such a way that it simply
calculates Decode(τ) and outputs some information about m (say: its first bit).
Therefore Γ cannot contain the Decode function, and hence, we need to restrict
Γ in some way.

Note that the assumption that Γ is a restricted class of functions is actually
very realistic. In practice, the leakage functions need to be computationally
�simple�: while it is plausible that the adversary can read-off the individual bits,
or learn their sum, it seems very improbable that an attack based on measuring
power consumption or electromagnetic radiation can directly give information
about some more complicated functions of the secret bits.

In this thesis we consider two natural choices of such Γ's and show LRS
schemes information-theoretically secure in these settings relying on determinis-
tic extractors [153, 23, 44, 45, 36]. In Section 4.3.1 we describe a construction
where each leakage function can depend only on some restricted part of the mem-
ory: either because it consists of two separate blocks, or because it is infeasible
for the adversary to choose a function that depends on the memory cells that are
physically far from each other. In Section 4.3.2 we construct a scheme that is

28 CHAPTER 4. LEAKAGE-RESILIENT STORAGE

secure if the cardinality of Γ is restricted (but still it can be exponential in |τ |).
This construction implies security in the case when the set Γ consists of functions
that are computable by Boolean circuits of a small size. Our construction is an
adaptation of the technique already used (in a different context) in [148, 10].

The idea to model the leakages as functions from a small complexity class ap-
peared already in [75], and was recently used in an independent work by Faust et
al. [81] (we discuss the relationship between our work and [81] in Section 4.4). We
also discuss (in Section 4.5) the connection between the problem of constructing
leakage-resilient storage and a theory of compressibility of NP-instances [95].

4.1.3 Preliminaries

In this section we state the lemma that we need in the security proofs of this
chapter.

The proof of the following lemma appears in Appendix A.1.1.

Lemma 1. For every random variables X, Y and an event E we have

d(X|Y = y ∧ E) +Pr
[
E
]
≥ d(X|Y). (4.2)

The proofs of the following lemmata appear in the full version of [74].

Lemma 2 ([74]). Let A,B be random variables where A ∈ A. Then Pr [B = A] ≤
d(A|B) + 1/ |A|.

Lemma 3 ([74]). Let A,B be two random variables and let φ be any function.
Then d(A|B) ≥ d(A|φ(B)).

Lemma 4 ([74]). Let A,B be independent random variables and consider a se-
quence V1, . . . , Vi of random variables, where for some function φ, Vi = φi(Ci) =
φ(V1, . . . , Vi−1, Ci), with each Ci being either A or B. Then A and B are inde-
pendent conditioned on V1, . . . , Vi, i.e. I(A;B|V1, . . . , Vi) = 0, where I denotes
the Shannon's information.1

The following lemma was proven in [10]:

Lemma 5 ([10]). Let Y be an n-bit random variable with H∞(Y) ≥ k. Let
{hs}s∈S be a collection of `-wise independent universal hash functions hs : {0, 1}n →
{0, 1}α (for ` ≥ 2). For at least 1− 2−u fraction of s ∈ S, we have d(hs(Y)) ≤ ε
for

u =
`

2
(k − α− 2 log(1/ε)− log `+ 2)− α− 2. (4.3)

1In [74] this lemma is stated in terms of a Markov chain.

4.2. THE DEFINITION 29

We will also use the following standard fact whose proof appears in Appendix
A.1.2.

Lemma 6. Let X be a random variable uniformly distributed over {0, 1}n, and
let W be a random variable that is independent on X. Let f : {0, 1}∗ → {0, 1}λ.
Then for every k ∈ N we have

Pry:=f(X,W) [H∞(X|f(X,W) = y) ≤ k] ≤ 2λ+k−n. (4.4)

4.2 The Definition

Formally, a leakage-resilient storage (LRS) scheme is a pair Φ
def
= (Encode,Decode),

where

• Encode is a randomized, efficiently computable function Encode : {0, 1}α →
{0, 1}β, and

• Decode is a deterministic, efficiently computable function Decode : {0, 1}β →
{0, 1}α.

Security of such a scheme is defined as follows. Consider the following game
between an adversary A and an oracle O (a similar game was used to define
security of the Forward-Secure Storage (FSS) [69], the main difference being
that (1) FSS had a secret key and (2) the FSS game had just one round)

1. The adversary chooses a pair of messages m0,m1 ∈ {0, 1}α and sends them
to O.

2. O chooses a random bit b ∈ {0, 1} and sets τ
def
= Encode(mb).

3. The following is executed t times, for i = 1, . . . , t:

(a) A selects a function Λi : {0, 1}β → {0, 1}λi ∈ Γ, and sends it to O,
(b) O sends Λi(τ) to A. We say that A retrieved λi bits from τ .

4. The adversary outputs b′. We say that she won the game if b = b′.

Such an adversary is called a (Γ, λ, t)-adversary if
∑t

i=1 λi ≤ λ.
We say that Φ is (Γ, λ, t, ε)-secure if no (Γ, λ, t)-adversary wins the game with
probability greater than 1

2
+ ε.2 We will drop t and say that Φ is (Γ, λ, ε)-secure

2 We say that Φ is non-adaptively (Γ, λ, t, ε)-secure if the adversary wins the game with
probability at most 1

2 + ε, with the restriction that her choice of the functions Λi is non-
adaptive (i.e. she has to choose all the Λi's in advance).

30 CHAPTER 4. LEAKAGE-RESILIENT STORAGE

if the parameter t does not matter, i.e. if no (Γ, λ, t)-adversary wins the game
with probability greater than 1

2
+ ε, for any t.

Unless explicitly stated otherwise, we will assume that the adversary is computa-
tionally-unbounded. In this case we assume that the adversary is deterministic.
This can be done without loss of generality, since the unbounded adversary can
always compute the optimal randomness.
For an adversary A as above, let viewA denote the vector of values that the adver-

sary A retrieves from τ , i.e. viewA
def
= (Λ1(τ), . . . ,Λt(τ)). Note that |viewA| ≤ λ.

As argued in the introduction, LRS can be viewed as a generalization of
the All-Or-Nothing Transform (AONT) introduced in [139] (see also e.g. [36]
for a formal definition). In our framework AONT is simply a (Γ↓, λ, ε)-secure
LRS, Γ↓ being a set of functions Λi that leak some bits of the memory, i.e. the
functions that have a form Λi(τ1, . . . , τβ) = τi, where ε is equal to 0 if we consider
perfectly-secure AONT, or is some negligible value if we consider statistically-
secure AONT.

4.2.1 A Weaker Definition

In our schemes, the encoding τ of a string m ∈ {0, 1}α is composed of two parts:
(1) the randomness τrand used to encode the message and (2) the result of the
encoding process, i. e. some value f(τrand) xored with the message m (where f
is some publicly-known function). More generally, one can assume that m is a
member of some group (G,+) and f has a type {0, 1}∗ → G. In this case the
encoding of a message m is (τrand, f(τrand) +m).

For the sake of the security proofs in this chapter, we will consider a game
that we call a weak attack in which f(τrand) + m is hidden from the adversary,
and the Λi's are applied only to τrand. The adversary in this game will be called
a weak adversary and denoted Aweak , and we will say that the LRS scheme is
weakly (Γ, λ, t, ε)-secure if d(f(τrand)|viewAweak

) ≤ ε, for any Aweak , where τrand is
distributed uniformly over {0, 1}n.
We will say that Γ is robust if Γ is closed on the operation of fixing the sec-
ond part of the input, i.e. if for every Λ ∈ Γ and every z ∈ G we have that
Λ′(x) := Λ(x, z) is also a member of Γ.

The following lemma shows that a weakly-secure scheme is also secure ac-
cording to the general definition.

Lemma 7. Let Γ be an arbitrary robust set as above. For any λ, t and ε, if an
encoding scheme is weakly (Γ, λ, t, ε)-secure then it is also (Γ, λ, t, ε · 2α)-secure.

Proof. Take some adversary A that wins the game described in Section 4.2 with

4.3. THE IMPLEMENTATIONS 31

some probability 0.5 + δ. We construct a weak adversary Aweak such that

d(f(τrand)|OutAweak
) = δ · 2−α, (4.5)

where OutAweak
is some value that is a function of viewAweak

(we will think of it
as an output of the adversary Aweak at the end of the execution). Therefore, by
Lemma 3, we will have that d(f(τrand)|viewAweak

) ≥ δ · 2−α. After showing this
we will be done, by setting δ := ε · 2α.

The adversary Aweak works by simulating A. First, it chooses a random string
z ∈ {0, 1}α and it starts A. Let m0,m1 be the messages that A outputs. Then,
Aweak handles the requests issued by A in the following way. Recall that each
request of A is a function Λi : {0, 1}n×{0, 1}α → {0, 1}λi that should be applied
to τ . Each time such a request is issued, the adversary Aweak constructs a request
Λ′i defined for every τrand as follows:

Λ′i(τrand) := Λi(τrand, z).

By the robustness of Γ we have that if Λi ∈ Γ then also Λ′i ∈ Γ. When the
interaction is over and A outputs b′, the adversary Aweak outputs OutAweak

:=
z −mb′ .

By Lemma 2 we have

Pr [OutAweak
= f(τrand)] ≤ 2−α + d(f(τrand)|OutAweak

). (4.6)

Now suppose that for some i ∈ {0, 1} the following event Ei occurred: z =
mi+f(τrand). In this case Aweak simply simulated the execution of A against the
oracle O with b = i. Since z is chosen uniformly hence Pr [E0] = Pr [E1] = 2−α.
Therefore the probability that b′ = b(= i) is equal to 0.5 + δ. Moreover, in this
case (i.e. when E0∪E1 occurred and b

′ = b) we get that OutAweak
= mi+f(τrand)−

mb′ , and therefore OutAweak
= f(τrand). Hence we have

Pr [OutAweak
= f(τrand)] ≥ Pr [b = i | E0 ∪ E1] ·Pr [E0 ∪ E1]

= (0.5 + δ) · 2−α+1

= 2−α + δ · 2−α+1.

Combining it with (4.6) we get (4.5).

4.3 The Implementations

In this section we consider two types of leakage functions Γ, and show LRS
schemes secure against these Γ's relying on deterministic extractors [153, 23, 44,
45, 36].

32 CHAPTER 4. LEAKAGE-RESILIENT STORAGE

In Section 4.3.1 we describe a construction where each leakage function can
depend only on some restricted part of the memory: either because it consists
of two separate blocks, or because it is infeasible for the adversary to choose a
function that depends from the memory cells that are physically far from each
other.
In Section 4.3.2 we construct a scheme that is secure if the cardinality of the set
of functions that the adversary can choose is restricted.

4.3.1 Memory Divided into Two Parts

Suppose that the encoding is stored on some physical storage device that consists
of two separate chips, i.e. the memoryM is divided into two partsM0 andM1,
and each leakage function can be applied to one of theMi's separately. In other
words, the only restriction is that the adversary cannot choose leakage functions
that depend simultaneously on both M0 and M1. More precisely, take some

β′ < β and let τ = (τ 0, τ 1) where τ 0 def
= (τ1, . . . , τβ′), and τ

1 def
= (τβ′+1, . . . , τβ).

Let Γ2 be the set of all functions Λi that �depend only on τ 0 or τ 1�, i. e. they
have a form

Λi(τ) = Λ′i(τ
0),

or

Λi(τ) = Λ′i(τ
1)

(for some Λ′i). Of course, τ 0 and τ 1 do not need to be stored on two separate
memory chips, and it is enough that it is simply impossible for the adversary to
compute any function of τ 0 and τ 1 jointly. This may happen for example if τ 0

and τ 1 are stored on one chip, but are physically far from each other. Observe
also that the class Γ2 includes all the functions Λ(·) that have communication
complexity λ (where λ is the bound on the total amount of bits that the adversary
can retrieve). This includes for example the function that computes sum of the
bits in (τ 0, τ 1) (as long as λ is at least logarithmic in the length of (τ 0, τ 1)).

The construction

One may observe that this model is very similar to the one of the two-party
Intrusion-Resilient Secret Sharing (IRSS) of Dziembowski and Pietrzak (see [74],
Section 2.1). The main difference is that the scheme of [74] has an additional
property that the decoding function needs to access only small part of the en-
coded message. Since we do not need this property here, we can use in our
construction a standard tool called two source extractors [44] (cf. Definition 5 in
Section 2.1.3). Let Ext2 : {0, 1}n × {0, 1}n → {0, 1}α be a two source extractor

4.3. THE IMPLEMENTATIONS 33

and Φ2
def
= (Encode2,Decode2). To encode a message m ∈ {0, 1}α, we pick two

n-bit strings R0 and R1 uniformly at random and we set

τ = Encode2(m) = (τrand,m
∗)

def
= (R0, R1,Ext2(R0, R1)⊕m)

and we store R0 in the first part of the memory (M0), and (R1,Ext2(R0, R1)⊕m)
in the second part (M1). To decode it suffices to evaluate

Decode2(R0, R1,m
∗)

def
= m∗ ⊕ Ext2(R0, R1).

We have the following lemma.

Lemma 8. If Ext2 : {0, 1}n×{0, 1}n → {0, 1}α is a (k, k, ε)-two source extractor
then Φ2 is (Γ2, λ, 2

α · ε+ 21+α+k+λ−n)-secure.

Proof. First we show that Φ2 is weakly secure against the adversary Aweak out-
lined in Section 4.2.1 (with τrand = (R0, R1)) and then we use Lemma 7. Let
Aweak be an adversary that can apply the leakage functions Λi only to τrand and
denote with viewAweak

= (Λ1(τrand), . . . ,Λt(τrand)) the view of the adversary after
t queries to the oracle O. We can now apply Lemma 4 (with A = R0, B = R1,
φi = Λi and Vi = Λi(τrand))

3 and conclude that R0 and R1 are independent given
viewAweak

, i.e. I(R0;R1|viewAweak
) = 0. Moreover by Lemma 6 we know that for

each i ∈ {0, 1}

Pry:=viewAweak
[H∞(Ri|viewAweak

= y) ≤ k] ≤ 2k+λ−n.

Thus with probability at least 1− 21+k+λ−n it happens that y = viewAweak
is such

that for both i ∈ {0, 1} we have H∞(Ri|viewAweak
= y) ≥ k. Let V denote the

corresponding event. We clearly have that

d(Ext2(R0, R1)|viewAweak
= y ∧ V) ≤ ε.

Hence, by Lemma 1 we get that d(Ext2(R0, R1)|viewAweak
) ≤ ε + Pr

[
V
]

=
ε + 21+k+λ−n. Combining it with Lemma 7 we get that Φ2 is (Γ2, λ, 2

α · ε +
21+α+k+λ−n)-secure.

Instantiations

Several constructions [44, 143, 152, 54, 136] of a two-source extractor exist in the
literature, and can be used in our scheme. Let F be a finite field and denote with
ExtHad : Fn × Fn → F the inner product in F, denoted ExtHad(x, y) = 〈x, y〉. As

3Clearly φi depends only on the values Vi that the adversary retrieved in the previous
rounds.

34 CHAPTER 4. LEAKAGE-RESILIENT STORAGE

shown in [136], for any δ > 0, the function ExtHad is a (kHad, kHad, εHad)-two source

extractor, for kHad > (1/2+δ)n log |F| and εHad = |F|(n+1)/2 2−kHad (this generalizes
previous results of Chor and Goldreich [44] and Vazirani [152]). Plugging it
into the construction described above we get the following LRS scheme ΦHad =
(EncodeHad,DecodeHad) for encoding messages m ∈ F:

EncodeHad(m) = (r0, r1, 〈r0, r1〉+m)
DecodeHad(r0, r1,m

∗) = m∗ − 〈r0, r1〉.
(4.7)

Observe that above, instead of using the xor we used the group operation in F.
This is ok, since, as explained in Section 4.2.1, one can transform a weakly-secure
scheme into a standard one by using any group operation (not necessarily xor).
Using Lemma 8 we get that ΦHad is (Γ2, λ, |F| · εHad + |F|1−n 21+kHad+λ)-secure.

4.3.2 Functions that have small descriptions

The second case that we consider is when the only restriction on Γ is that it is
a small set of robust functions: |Γ| = 2v, where v is some parameter (that can
be for example quadratic in β). One way to look at this family is to fix some
method to describe the leakage functions as binary strings, and observe that the
set of functions whose description has length v has exactly size 2v.

A natural example of such a Γ is a set of functions computable by Boolean
circuits of a fixed size (see e.g. [155] for an introduction to the complexity of
Boolean circuits). Recall that the size of a Boolean circuit is the number ρ of
its gates. Each gate G can be connected with two other gates (G1, G2) (and we
can assume that G is an AND gate if G1 6= G2, and it is a NOT gate otherwise).
Hence, for each gate we can have at most (ρ− 1)(ρ− 1) < ρ2 choices. Therefore
there are at most (ρ2)ρ = ρ2ρ circuits of size ρ. Thus the circuits of size ρ can be
described using 2ρ log2 ρ bits.

Several natural functions can be computed by Boolean circuits of a small size
(see Section 3 of [155]). For example every symmetric function4 can be computed
by a circuit of a linear size (in its input).

Let Γv be any robust set of functions such that |Γv| = 2v. We will now
construct a (Γv, λ, t, ε)-secure LRS. Let {hs : {0, 1}n → {0, 1}α}s∈S be a collection
of `-wise independent universal hash functions (see Section 2.1.4). The scheme

is parameterized by a value s ∈ S. For any s ∈ S let Φs
def
= (Encodes,Decodes),

being
Encodes(m) = (R, hs(R)⊕m),

4A function is symmetric if its output does not depend on the permutation of the input
bits. For example every function that just depends on the sum of the input bits is symmetric.
See Section 3.4 of [155].

4.3. THE IMPLEMENTATIONS 35

where R ∈ {0, 1}n is random. Let

Decodes(R, d) = hs(R)⊕ d.

We point out that also the above construction can be interpreted in terms of de-
terministic extractors. Indeed, as shown in [148] (and in [10]), `-wise independent
universal hash functions are, with high probability, deterministic extractors for
sources (with some min-entropy) that can be generated by an efficient sampling
algorithm or circuit of a small size.5 Stated in other words, an `-wise indepen-
dent universal hash function can be viewed as a function Ext : {0, 1}n → {0, 1}α
with the following property: for every source R ∈ {0, 1}n with min-entropy k
which is samplable by a circuit of a small size, Ext(R) is close to uniform with
high probability. The same construction was also used by Dodis et al. [66] in the
context of AONT. Both [148] and [66] consider only the non-adaptive case. Here
we show that this scheme is secure in the context of leakage-resilient storage. The
following lemma states that with a good probability (over the choice of s ∈ S)
the scheme Φs is secure.

Lemma 9. Fix an arbitrary robust set Γv such that |Γv| = 2v. For a randomly
chosen s with probability at least 1−ξ we have that Φs is (Γv, λ, t, 2

α·ε+2α+k+λ−n)-
secure, for any λ, k, t, v, `, ε and ξ such that

ξ = 2tv−
`
2

(k−α−2 log(1/ε)−log `+2)+α+2. (4.8)

In the lemma above k is a parameter, that in the proof will correspond to
the min-entropy of R conditioned on the view of the adversary. Observe that
we have a trade-off between 2α · ε + 2α+k+λ−n and ξ (larger k increases the first
term, and decreases the second). The proof of this lemma is more involved and
we present it in Section 4.3.2. Let us first discuss this lemma for more concrete
values of the parameters.

Corollary 1. Fix an arbitrary robust set Γv such that |Γv| = 2v. For a randomly
chosen s with probability at least 1 − ξ we have that Φs is (Γv, λ, t, 2

−µ)-secure,
for any λ, t, v, `, µ and ξ such that

ξ = 2tv−
`
2

(n−λ−3µ−4α−log `−1)+α+2. (4.9)

Proof. Set ε := 2−α−µ−1 and let k := n − µ − 1 − α − λ. Take Φs from Lemma
9. We have that

2α · 2−α−µ−1 + 2α+k+λ−n ≤ 2−µ−1 + 2−µ−1 ≤ 2−µ,

5The approach used in [148] is orthogonal to the one used in [44]: in the latter setting,
distributions can be arbitrarily complex, but they have to satisfy a strong independence re-
quirement; in the former setting distributions have to be samplable but can involve arbitrary
dependencies.

36 CHAPTER 4. LEAKAGE-RESILIENT STORAGE

and

ξ = 2tv−
`
2

((n−µ−1−α−λ)−α−2(α+µ+1)−log `+2)+α+2

which is equal to (4.9).

Concrete values. If we want to have security against circuits of size χn (for
some constant χ > 1) then the size of Γ is equal to 22χn log(χn). If we apply it
t = ωn times (for some constant ω < 1) then tv = 2χωn2 log(χn). To be more
precise set µ := 24 and α := 128, and n := 1024. If we set χ := 10, ω := 3/25 then
we can allow the adversary to retrieve at most 180 bits by setting ` = 278323.
With these settings we get ξ ≤ 4 · 10−12.
If we consider a non-adaptive scenario, in which the adversary chooses a single
leakage function (i.e. t = 1) and retrieves at most λ bits6, then we obtain a better
value for `: for µ := 24, α := 128, n := 1024 and χ := 10, we can allow the
adversary to retrieve at most 180 bits by setting ` = 2203. With these settings
we get ξ ≤ 2 · 10−28.

Practical considerations. The parameter s can be public. Therefore if ξ is
negligible, then for the real-life applications s can be just chosen once and for all
by some trusted party. For example, one can assume that s = H(0)||H(1)|| · · · ,
where H is some hash function (this of course can be proven secure only in the
random oracle model).

Alternatively, we could just assume that s is chosen independently each time
Encodes is calculated, and becomes a part of the encoding. In other words we
could define

Encode′(m)
def
= (s,Encodes(m)) and Decode′(s, x)

def
= Decodes(x).

Of course, in this way the length β of encoding gets larger, and hence if Γv is a
family of circuits whose size ρ is some function of β, then v becomes much larger.

Proof of Lemma 9

We first show that Φs is weakly secure. Suppose that the adversary Aweak per-
forms a weak attack against Φs. Let R be distributed uniformly over {0, 1}n.
Then we show that for any ε > 0 and for at least 1− ξ fraction of s ∈ S we have

d(hs(R)|viewAweak
) ≤ ε+ 2k+λ−n,

6This is equivalent to consider an adversary who chooses t > 1 leakage functions in advance,
with the same total number of retrieved bits. Note that this scenario is theoretically weaker
than the adaptive one but it is useful from a practical point of view.

4.3. THE IMPLEMENTATIONS 37

where ξ is a function of t, v, `, k, α and ε as defined in (4.8). Consider some fixed
adversary Aweak . Let GoodAweak

denote the event that H∞(R|viewAweak
= y) ≥ k,

where y := viewAweak
. By Lemma 6 we get that Pr

[
GoodAweak

]
≤ 2k+λ−n. On

the other hand, we have

H∞(R|viewAweak
= y,GoodAweak

) ≥ k.

Therefore, by Lemma 5 we get that

Prs [d(hs(R)|viewAweak
= y,GoodAweak

) ≥ ε] ≤ 2−u, (4.10)

where Prs means that the probability is taken over the choice of s ∈ S, and u is
defined in (4.3). From Lemma 1 we get that (4.10) implies that

Prs
[
d(hs(R)|viewAweak

) ≥ ε+Pr
[
GoodAweak

]]
≤ 2−u,

which implies that

Prs [d(hs(R)|viewAweak
) ≥ ε′] ≤ 2−u, (4.11)

where ε′ := ε + 2k+λ−n. Of course (4.11) holds just for a fixed adversary and to
complete the proof we need to give a bound on the value

max
Aweak

(Prs [d(hs(R)|viewAweak
) ≥ ε′]) . (4.12)

We will do it by applying a union-bound (over all Aweak) to (4.11). However,
since that the total number of different adversaries Aweak is doubly-exponential
in λ,7 we cannot do it in a straightforward way. Instead, we first observe that

max
Aweak

Prs [d(hs(R)|viewAweak
) ≥ ε′] = max

Λ1,...,Λt

Prs [d(hs(R)|Λ1(R), . . . ,Λt(R)) ≥ ε′] .

(4.13)
Since each Λi ∈ Γv, and |Γv| = 2v we get

max
Aweak

(Prs [d(hs(R)|viewAweak
) ≥ ε′]) ≤ (2v)t · 2−u = 2tv−u. (4.14)

This completes the proof, since now using Lemma 7 we are done.

7This is because after retrieving λi bits in the ith round the adversary can choose 2v different

functions Λi+1, hence in every round there are 2v·2
λi

different adversaries.

38 CHAPTER 4. LEAKAGE-RESILIENT STORAGE

4.4 Comparison with [81]

In an independent work Faust et al. [81] consider a problem of leakage-resilient
computation. In their work, that can be viewed as an extension of the �private
circuits� paper of [98], they provide a formal definition of a circuit computation
that is secure against a class of leakages LTR (cf. Def. 1 of [81]), and for certain
classes LTR, they construct (Theorem 1, [81]) a generic transformation that,
given any circuit C transforms it into another circuit C ′ that is secure against
the leakages in LTR.

The main ingredient of their construction is a linear encoding scheme that is
secure against leakages in some class L. Linearity of the encoding means that the
decoding function can be expressed as Decode(x1, . . . , xβ) = r1x1 + · · · + rβxβ,
where r1, . . . , rβ are constants from some field. Their definition of an encod-
ing scheme is very similar to ours: essentially their p-adaptive (L, τ, ε)-leakage-
indistinguishable encoding is the same as our (L, λ, t, ε)-secure LRS scheme. The
additional parameter τ , that they use indicates the running time of the adversary
(that we do not consider in our work). On the other hand we use the parameter
λ, that indicates the total amount of bits retrieved from the encoding, which is
absent in [81].

We note that while the work of [81] has an obvious advantage over ours by
considering not only secure storage, but also computation, our schemes cover
different (and possibly more realistic) classes of leakage functions. In particular,
both of the approaches in our work cover trivially the so-called Hamming weight
attacks [107], which is a measurement frequently applied in practice, where the
adversary is allowed to learn a sum of the bits, while the approach of [81] does
not cover them.

4.5 Connection with the theory of compressibility

of NP-instances.

We believe that in general the idea to model the leakage as functions from some
low complexity class is worth investigating further, as it may lead to new ap-
plications of the circuit lower bounds. Interestingly, this is probably the first
scenario ever considered in cryptography in which the computing power of the
adversary is smaller than the computing power of the users (during some part
of the attack). A similar observation was already made in [75] (footnote 3, page
295).

It may also be worth exploring some interesting connections between this
area and the theory of the compressibility of NP-instances of Harnik and Naor
[95]. Informally, an NP-language L is compressible if every x ∈ {0, 1}∗ can

4.5. CONNECTION WITH THE THEORY OF COMPRESSIBILITY OF

NP-INSTANCES. 39

be �compressed� to a much shorter string Λ(x) (where Λ is some poly-time
function, and λ = |Λ(x)| � |x|) such that an infinitely powerful machine M
can determine if x ∈ L just by looking at Λ(x). Call this (PTIME,∞)-λ-
compressibility. As a natural generalization of this concept, one can consider
any (P0,P1)-compressibility (where P0 and P1 are some complexity classes): in
this setting we would require that Λ ∈ P0, and the machine M operates in P1.

For simplicity in this section consider only the one-round LRS's i.e. t = 1
(cf. game in Section 4.2). Moreover, assume that the adversary is poly-time.
Informally speaking what we are looking for, when constructing a Γ-secure
LRS Φ = (Encode,Decode) is a class of problems that are not (Γ, PTIME)-
λ-compressible on average. More precisely, consider the language L of all valid
encodings of some fixed message M . Of course, if this language is (Γ, PTIME)-
λ-compressible with some probability ε then Φ cannot be (Γ, λ, 1, ε)-secure (as
otherwise the adversary could just choose Λ to be her leakage function). We think
that investigate these connections is an interesting future research direction.

Chapter 5

Authenticated Key Exchange

Implementation in the

Bounded-Retrieval Model

In this chapter we present our implementation of an Authenticated Key Exchange
protocol, secure in the bounded-retrieval model, in C programming language, us-
ing the cryptographic library of the OpenSSL project [128]. The code is available
at the author's web site http://www.dsi.uniroma1.it/~davi/.

5.1 Introduction

5.1.1 Problem

In 1976, the seminal work of Whitfield Diffie and Martin Hellman �New directions
in cryptography� [52] introduced the Diffie-Hellman (DH) key exchange protocol,
which allows two parties, with no prior knowledge of each other, to securely derive
a shared secret key over an insecure channel, relying on the CDH assumption
(see Section 2.2). In the classical DH Key Exchange (see Figure 5.1), the public
DH values of the parties are both sent in clear over the channel (i.e. without any
encryption) and there is no authentication.

For this reason, the DH Key Exchange suffers of the man-in-the-middle
(MITM) attack (see Figure 5.2), in which an adversary, who controls the channel
between the parties, can force each party to share a valid secret key with her,
while the parties believe to share this key among them.

To perform such attack, an adversary simply needs to intercept the public
DH values sent from a party to the other and to send, instead of it, her valid
public DH values to the parties. Although MITM attack looks simple, it is
very serious, as, after such attack, the adversary can completely control all the

41

http://www.dsi.uniroma1.it/~davi/

42
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

Setup:

• A finite cyclic group G = 〈g〉 of order
a prime number p.

Protocol:

Client C Server S

privC
R←− [p− 1] privS

R←− [p− 1]

pubC := gprivC
pubC−−−→
pubS←−− pubS := gprivS

KC := pubprivC
S

KS := pubprivS
C

Figure 5.1: Diffie-Hellman Key Exchange Protocol

Setup:

• A finite cyclic group G = 〈g〉 of order a prime number p.

Protocol:

Client C Adversary A Server S

privC
R←− [p− 1] priv1A

R←− [p− 1] privS
R←− [p− 1]

priv2A
R←− [p− 1]

pubC := gprivC
pubC−−−→
pub1A←−−−− pub1A := gpriv1A

pub2A := gpriv2A
pub2A−−−−→
pubS←−−− pubS := gprivS

KC := pubprivCA K1A := pubpriv1A
C

K2A := pubpriv2A
S

KS := pubprivSA

Figure 5.2: Man-in-the-middle attack in the Diffie-Hellman Key Exchange Pro-
tocol

5.1. INTRODUCTION 43

communication between the parties. A countermeasures to this weakness of the
DH protocol is authentication, which means that the parties running the protocol
have to authenticate each other (or only in one direction) to check if they are
sharing the secret key computed by the protocol with the other party or with
some malicious adversary, accepting the key in the former case while aborting it
in the latter one.

A simple way to realize an Authenticated Key Exchange (AKE) protocol
consists in providing the parties with a password, a weak key, eventually not
uniformly distributed, human-memorizable and with low entropy. Using this
password, the parties can run a Password-based Authenticated Key Exchange
(PAKE) protocol to perform the AKE protocol. In such setting, an adversary
could try to use the low entropy of the password to break the security of the
protocol, performing a so called dictionary attack, in which the adversary try
to determine the password by checking all the possible values. Indeed, as the
dictionary, the set of all possible (or most possible) values for the password, has a
small size, the adversary can try all these values as password, with non-negligible
probability of finding the right one. A dictionary attack can be performed on-line
or off-line. On-line means that the adversary repeatedly runs the protocol and
interacts with the other parties to verify if her guess of the password is correct.
Hence an on-line attack is not avoidable and to deal with such attack, the system
administrators of the machines on which the protocol is run or the implementers
of the protocol have to limit the number of attempts that a party can perform
to authenticate or block a password after it is used for a certain number of failed
attempts to authenticate. In an off-line attack, an adversary try to verify her
guess for the password without running the protocol. A PAKE protocol has to be
designed in a way such that an adversary can launch on-line dictionary attacks
but it should be infeasible for her to verify her guess for the password off-line,
without running the protocol.

5.1.2 Contribution

We implemented a two-party AKE protocol in C programming language, using
the cryptographic library of the OpenSSL project [128]. Following the general
paradigm introduced by Cash et al. [42], we based the AKE protocol on a Weak
Key Exchange (WKE) protocol and a UC-PAKE protocol. Informally, a WKE
protocol provides two parties with passwords (or weak keys) that are individually
unpredictable, while a PAKE protocol allows two parties to securely derive a
key over an insecure channel using a low-entropy password. In particular, we
implemented:

1. in the Bounded Retrieval Model, a WKE protocol to output the password
needed by the parties to run the PAKE protocol, similar but simpler than

44
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

that one showed in [42], which uses less random bits than our protocol but
does not seem to be efficiently implementable in practice;

2. the two-party PAKE protocol, showed secure in the Universal Compos-
ability framework in [2], which is more efficient than the Canetti et al.'s
UC-PAKE protocol [40] used in [42].

Moreover, as a contribution, we formally adapted the security analysis of the
WKE protocol of [42] to our WKE protocol.

In our model, before running the protocols, the two parties, Client and Server,
have to agree on a shared large secret key F , a file of n bits (some Gigabytes).
They will use this file in the WKE protocol to compute the password for the
PAKE protocol. Further, an active adversary A controls the channel between
the parties and, before the parties run WKE and PAKE protocols, she can tam-
per the parties' machines and perform any efficient computation on the entire
internal state of the parties, hence also the shared file F , but, as we work in
the Bounded Retrieval Model (see Section 2.3), we assume that the adversary is
communication bounded and can retrieve at most λ bits of information from the
internal state of Client and Server. In contrast, in our implementation Client can
choose how many bits of the shared file F she wants to use in the AKE protocol
with Server.

Usually, a PAKE protocol deals with passwords with low entropy but in our
setting the passwords output by the WKE protocol, and then used in the PAKE
protocol, have high min-entropy from the adversary point of you. The important
role of the PAKE protocol is to provide the client-to-server authentication: Client
and Server will agree on a shared secret key after the PAKE protocol only if the
passwords that they obtain at the end of the WKE protocol are equal. In fact,
an adversary, who controls the channel and knows some information about the
internal state of the parties and the shared file F , can adaptively correlate the
passwords obtained by Client and Server at the end of the WKE protocol, without
violate the individual unpredictability of the passwords.

Several security models do not cover the realistic scenario in which the parties
run the protocol with different but related passwords. For this reason, we use
a UC-PAKE protocol, as in the UC framework (see Section 2.4) there are not
assumptions about the distribution of the passwords used by the parties who run
the protocol.

Canetti et al. [40] showed that UC-PAKE protocols cannot be achieved in the
standard model (see Section 2.2) and proposed a construction in the common
reference string (CRS) model (used in the AKE protocol of [42]), in which the
parties running the protocol agree, in a setup phase, to a shared short string.

5.1. INTRODUCTION 45

Clearly, it is simple to implement a CRS in the BRM as in this model the par-
ties already share a large file and hence they should simply generate the CRS
and store it as a part of their shared string but the construction in [40] is less
efficient than other known constructions, developed in the Random Oracle (RO)
and Ideal Cipher (IC) models. Therefore, we decide to implement the UC-PAKE
construction of Abdalla et al. [2], which is secure under the CDH intractability
assumption and relies on the RO and IC models (see Section 2.2) and is more
efficient than the protocol of [40]. We deal with the controversial issues to im-
plement a RO and an IC with some concrete cryptographic hash functions and
block cipher respectively [38], using the tools provided by the OpenSSL cryp-
tographic library and following the standard choices showed in the RFC 5683 -
Password-Authenticated Key Diffie-Hellman Exchange [33].

OpenSSL project. As stated on the OpenSSL project web page [128]: �The
OpenSSL Project is a collaborative effort to develop a robust, commercial-grade,
full-featured, and Open Source toolkit implementing the Secure Sockets Layer
and Transport Layer Security protocols as well as a full-strength general purpose
cryptography library�. In this thesis, we use only the OpenSSL cryptographic
library, the last version 1.0.0e released on September 2011, which �implements
a wide range of cryptographic algorithms used in various Internet standards�.

5.1.3 Related works

Privacy amplification and authenticated key exchange based on weak keys that
have some entropy were studied in [158, 122, 138, 60]. All the protocols showed
therein are information-theoretic but they are not local, i.e. the parties need to
use the whole secret key in their computation. Remind that, in our setting,
Client can choose the number of bits of the shared password that the parties
have to use when they run the protocol. Moreover, we will show at the end of
Section 5.3.1 that the parties have to access a small portion of the shared file to
achieve security against an adversary who can retrieve a very large quantity of
bits, even 99% of the shared file.

In the exposure-resilient cryptography [36, 66, 103] an adversary have almost
complete access to the secret key, but she can only learn the bits of the key
(which is short) and she cannot perform arbitrary computation on it. Also the
protocols proven secure in this setting are not local. To deal with key exposure,
some stateful schemes have been introduced in which the key evolves during the
time and an adversary can learn the whole key but the protocols update their
secret key at each round. In this setting, forward secure schemes [11, 18, 39]
provide security for all the rounds occurred before that the adversary tampers
the system and learns the secret key but, once this happens, there is no more

46
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

security for the following rounds.

Key-insulated cryptography [61, 62] guarantees security for past and future
rounds but it needs a master key, used by the parties to update their secret keys
at every round and stored by a party that the adversary cannot corrupt. As an
extension of such models, (two-party) intrusion-resilient schemes [99, 55] con-
sider an adversary who can compromises both the parties but not in the same
round.

In 2006, Dziembowski [68] constructed the first secure intrusion-resilient au-
thenticated key exchange, in the BSM (see Section 2.3), using random oracles.
Influenced by the work of Boyen et al. [26], in which the authors study the AKE
protocol which uses biometric data and introduce �the idea of using low entropy
intermediate keys as input of a PAKE protocol�, Cash et al. [42] showed a general
construction of an intrusion-resilient AKE protocol secure against static adver-
sary and achieved an instantiation of such paradigm without random oracles, in
the BRM.

In our implementation, we follow the general paradigm of [42] (implicitly used
also in [68]), in which an AKE protocol is realized by performing a WKE protocol,
which provides the parties with individually unpredictable passwords, and then a
PAKE protocol, which uses such passwords as input and outputs a shared secret
key only when both parties run the protocol with the same passwords.

In 1992 Bellovin and Merrit [19] introduced the notion of PAKE but only
in 2000 Bellare et al. [12] and Boyko et al. [27] provided the first formalization
of models and security of PAKE protocols. Both these works studies the En-
crypted Key Exchange (EKE) protocol introduced in [19], a DH key exchange
in which the public values of the parties are encrypted before to be sent from a
party to the other, using the shared password as the key for the encryption and
decryption operations. Bresson et al. [31] showed a formal security proof for a
PAKE protocol in the model of [12], which extends the framework of Bellare and
Rogaway [13, 15], relying on the RO model and the IC model, while Boyko et al.
[27] provided such a proof relying only on the RO model, using the framework
of Shoup [145].

There are also some works [86, 104, 105] that provide security proofs for
PAKE protocol in the standard model, relying on the DDH assumption (see
Section 2.2), but such protocols are not efficiently implementable.

A more recent version of the EKE protocol is the AuthA protocol1 [16],
modeled in [31] by the One-Encryption Key Exchange (OEKE) protocol, in which
only the public value of the server is encrypted before to be sent to the client,

1Considered for standardization by the IEEE P1363 Standard working group on public-key
cryptography [97]

5.2. IMPLEMENTATION 47

while the first flow from the client to the server is sent in clear, without any
encryption. In [32], Bresson et al. showed a construction of the AuthA protocol
which does not rely on the IC model but uses a full-domain hash scheme, that is
provable in the RO model, to perform the encryption process. Instead of using
a block cipher, they encrypt the server's public value by multiplying it by a
full-domain hash of the shared password.

In [40] Canetti et al. pointed out that the security models of [12] and [27]
do not cover the realistic scenarios in which the parties run the protocol with
�different but possibly correlated passwords� and then they introduced a new
security model in the UC framework for PAKE protocol, in which there are
�no assumptions on the distribution on the passwords� used by the parties who
run the protocol. Moreover, in [40], the authors showed a PAKE protocol and
proved its security in their new model, relying on standard number-theoretic
assumptions, against static adversaries, in the CRS model. They also showed
that it is impossible to achieve UC-PAKE in the standard model. Their protocol
is based on those ones of Katz et al. [104] and Gennaro and Lindell [83] but
it is not as efficient as some protocols proven secure in the models of [12] and
[27], e.g. [31, 3, 104, 118]. Abdalla et al. [2] showed that the efficient PAKE
protocol studied in [31], and proven secure in the model of [12], is also secure in
the UC framework of Canetti et al. [40]. Indeed, in [2] the authors proven the
security of the UC-PAKE protocol against adaptive adversaries under the CDH
intractability assumption, in the RO model and the IC model.

5.2 Implementation

In this section, we describe the Authenticated Key Exchange protocol that we
have implemented in C programming language, using the cryptographic library
of the OpenSSL project. Our AKE is based on a WKE protocol and a UC-PAKE
protocol, we show them in the next subsections.

5.2.1 Weak Key Exchange

In a WKE protocol (see Figure 5.3), two parties, Client and Server, sharing a
source, simply choose a set of indexes from the source, send it to each other
and compute a password as the concatenation of the bits of the source at the
provided (ordered) indexes, first the Client's indexes and then the Server's ones.

The WKE construction of Cash et al. [42] makes use of an averaging sampler
[17], which samples a small amount of bits from a large source in such a way that
the min-entropy rate of the sampled bits is nearly the same of the large source.

48
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

Setup:

• F ∈R {0, 1}n: a large file (some Gigabytes) shared between Client and
Server.

• DirProd : Σn × [n]t → Σt, a function which takes a source y =
(y[1], . . . , y[n]) ∈ Σn and indexes (i1, . . . , it) ∈ [n]t and outputs
(y[i1], . . . , y[it]), the elements of the source at the provided indexes.

Protocol:

1. Client and Server choose random IC , IS ∈ [n]t, respectively.

2. Client sends IC to Server.
Server receives a value I ′C and computes

PwdS = DirProd(F, I ′C)||DirProd(F, IS).

Server outputs PwdS as her password for the PAKE protocol.

3. Server sends IS to Client.
Client receives a value I ′S and computes

PwdC = DirProd(F, IC)||DirProd(F, I ′S).

Client outputs PwdC as her password for the PAKE protocol.

Figure 5.3: Weak Key Exchange Protocol

5.2. IMPLEMENTATION 49

In their protocol, Cash et al. uses an explicit construction of averaging sampler
showed by Vadhan [151], which uses less random bits than the random choice.
However, an implementation of such sampler does not seem to be practical. In
fact, it is not clear how to calculate the hidden constants of the Vadhan's result,
as it is based on properties of expander graphs and their second eigenvalue for
which only asymptotic values are known, and thus it is not possible to calculate
the exact amount of random bits needed.

In our construction, to sample some bits from the large shared source, instead
of using random walks on expander graphs, we use the random choice and then,
to extract the selected bits from the source, we use the simple function Direct
Product,2 which takes as input a source and a set of indexes and outputs the
elements of the source at the provided indexes. A result of Alwen et al. (Lemma
A.3 in [7]) shows that, choosing appropriate parameters, the bits output by the
function Direct Product have good min-entropy. It means that the shared pass-
words obtained by the parties at the end of the WKE protocol are individually
unpredictable for the adversary, they will be equal if the adversary is passive
while they could be different and correlated if the adversary performs some ac-
tion on the messages exchanged between the parties, e.g. the adversary can block
IC or IS and send a different, chosen by her, I ′C or I ′S.

Our WKE protocol is not forward secure, i.e. it does not provide security for
passwords in case of future adversarial break in, as when an adversary compro-
mises one of the party's machine, she could be able to retrieve (without violating
the retrieval bound) the bits of the shared file which were used to compute the
passwords in a previous execution of the WKE protocol. We show the analysis
of our WKE protocol in Section 5.3.1.

Implementation details. To use the Direct Product function, the two
parties running the WKE protocol have to choose uniformly at random the set
of indexes needed by this function and then they should send to each other their
own indexes. As the size of the shared file is some Gigabytes, the value of each
index, which represents the position of a bit in the source, could be a large
integer, around 1010, thus we have to use the C �long long int� type to store it,
i.e. 8 bytes. It means that to sample t bits from the n bits source, the parties
have to use 64 ∗ t random bits and they have to send these bits to each other.

To make our protocol more efficient in terms of random bits and communi-
cation complexity, we use a hash function to produce the indexes needed by the
Direct Product function. Client and Server have to choose a cryptographic hash
function H (for example SHA-1) and only a small random seed s, e.g. 4 bytes,

2Implicitly used also in [42]

50
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

and then they calculate respectively their t indexes idx1, . . . , idxt as follows:

idxi = ((H(i||s) mod 264) mod fileSizeBits) + 1, (5.1)

i.e. as the decimal value of the least significant 8 bytes (so it can represent an
integer between 0 and 264− 1) of the digest output by the hash function applied
to the number i concatenated to the seed s, modulo fileSizeBits, the size in bits
of the shared file, plus 1. Hence, ∀ i ∈ [t], it holds that idxi ∈ [fileSizeBits],
i.e. every index represents the position of a bit of the source. In this way, Client
and Server uses only few random bits and they do not need to send all the indexes
to the other party, as they can simply send their own seed and then they can
calculate the indexes of the other party by their own, applying the hash function
to the seed that they received.

We remind that the password is generated as the concatenation of the t
indexes chosen by the Client and the t indexes chosen by the Server, where
the indexes represent the position of bits in the shared file. Once Client and
Server have computed the indexes, they both store them in two different arrays
indexes_client and indexes_server and sort these arrays separately, using
the C's qsort function, which implements the �quick sort� algorithm3 and then
they repeat the following steps 2t times, the total number of indexes, until they
compute the whole password:

1. read the smallest elements of the indexes_client and indexes_server

arrays among the indexes not used yet4;

2. calculate in which byte and in which bit of this byte of the shared file is
the position corresponding at the selected index;

3. read this byte from the shared file;

4. check the value of the bit in the position corresponding at the selected
index;

5. insert the value of the bit extracted from the shared file in the proper
position in the password5.

Therefore, the cost of the WKE protocol for each party is given by the sum of
the following operations:

3From [116]: �The qsort function implementation might not be an in-place sort and might
thereby use an extra amount of memory to store the array.�.

4As the two arrays are sorted, it suffices to compare the first not already read element of
both arrays.

5Client's indexes are inserted in the first half of the password while Server's ones are inserted
in the second half, the first element of the corresponding indexes array in the first position of
the proper half, the second element in the second position and so on.

5.2. IMPLEMENTATION 51

• apply 2t times a hash function;

• apply 2 times a �quick sort� algorithm to array of length t;

• check the whole shared file once, to read the needed bytes from it6.

To avoid to apply the hash function, the parties would need to use another
method to compute the indexes, e.g. they could choose or compute their own
indexes separately and then send them to each other. But in this way, the
communication complexity of the protocol could be very expensive, as there is
no limit on the number of indexes the parties can use, and to store each index
are needed 64 bits (see the discussion at the beginning of this paragraph), while
in our solution the parties need to send to each other 64 bits in total. Hence, our
solution is very flexible, as Client can choose to use even all the bits of the shared
source to create the password, tolerating in this way the maximum amount of
leakage, with constant communication complexity, constant number of random
bits used by each party and reading the whole shared file only once, at the cost,
of course, to rely on the RO model. However, we would like to note that in our
implementation of the AKE protocol we need also a UC-PAKE protocol which
already relies on RO, as it is impossible to achieve UC-PAKE in the standard
model [40].

To avoid to sort the arrays of indexes, the parties would need to read several
times the shared file. This is the most expensive action, as to move to a selected
position in a file we need to physically move the head of the disk on which the file
is stored, hence we prefer to pay the cost of the sorting algorithm. One solution
could be to map the shared file into the memory but the size of this file could be
several Gigabytes, which could make this operation inefficient, and one should
study also the additional leakage of such operation.

5.2.2 Password-based Authenticated Key Exchange

In our AKE protocol, we implement the two-party UC-PAKE protocol, proven
secure in the RO and IC models, under the CDH assumption, by Abdalla et al.
in [2]. In this protocol (see Figure 5.4), the parties, Client and Server, share a
password and perform an one-flow encrypted Diffie-Hellman key exchange with
one-side authentication. To run the protocol, the parties have to agree on some
parameters:

1. A block cipher: (Ek,Dk).

2. Two hash functions: H0 : {0, 1}∗ → {0, 1}h0 and H1 : {0, 1}∗ → {0, 1}h1 .
6We need to read the file only once as the indexes are ordered and hence the following byte

position to read is always greater than or equal to the previous one.

52
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

3. A finite cyclic group G = 〈g〉 of order a prime number p, where the opera-
tion is denoted multiplicatively.7

Moreover, Client and Server share a sub-session identifier, which they can com-
pute exchanging nonces, and a password. In our setting, before running the
protocol Client chooses the parameters and then sends them to Server.

The protocol performs three flows. Client chooses a private DH random
exponent privC ∈ [p− 1], calculates the corresponding public DH value pubC :=
gprivC and sends it to Server, together with her name C. Similarly, Server chooses
a private DH random exponent privS ∈ [p− 1] and calculates the corresponding
public DH value pubS := gprivS but before to send it to Client, together with
her name S, Server encrypts it, using the password pwd and the sub-session
identifier ssid to compute a key for the block cipher. Such key can be computed
by the Public-Key Cryptography Standards (PKCS) #5 Password-Based Key
Derivation Function 2 (PBKDF2) with the Hash-based Message Authentication
Code (HMAC) Secure Hash Algorithm (SHA-1) pseudo-random function [101].
Server computes the DH secret key gprivCprivS as KS := pubprivS

C
.

To decrypt the public value of Server, Client apply the same PKCS5-PBKDF2-
HMAC-SHA-1 function used by Server to pwd and ssid to obtain the same key
for the block cipher. Then Client computes the DH secret key KC := pubprivC

S
,

the secret key skC := H0(ssid||C||S||pubC||pubS||KC) and an authentication tag
Auth := H1(ssid||C||S||pubC||pubS||KC)). Client sends this tag to Server.

Then Server computes H1(ssid||C||S||pubC||pubS||KS)), if it is equal to Auth
then Server computes the secret key skS := H0(ssid||C||S||pubC||pubS||KS) and
the protocol succeeds in providing Client and Server with a secret key, otherwise
Server produce an error message instead of the secret key. We discuss the anal-
ysis of this UC-PAKE protocol in Section 5.3.2.

Implementation details. In our implementation, as group G we use one
of the Modular Exponential (MODP) Diffie-Hellman groups for Internet Key
Exchange (IKE) showed in the the RFC2409 [94] and the RFC3526 [110]. By
default, the order of the group is a 1024-bits prime number, but when Client
runs the protocol, she can set it to 756, 1536, 2048, 3072, 4096, 6144 or 8192
bits. The generator is always the number 2.

OpenSSL provides the type BIGNUM, a good tool to deal with integer of large
size, and functions which implement the DH Key Exchange, using the type DH.
The type BIGNUM is used to hold a single integer and it dynamically allocates
memory to store its data structures, hence it can manipulate numbers of arbitrary
size. The type DH consists of several BIGNUM components, e.g. g the generator

7We can think of G\{1}, the set of the generators of G, as the set {gx|x ∈ Z∗q}.

5.2. IMPLEMENTATION 53

Setup:

• Client and Server share a sub-session identifier ssid and a password pwd.

• A finite cyclic group G = 〈g〉 of order a prime number p, where the
operation is denoted multiplicatively.

• A block cipher: (Ek,Dk).

• Two hash functions: H0 : {0, 1}∗ → {0, 1}h0 and H1 : {0, 1}∗ → {0, 1}h1 .

• The Public-Key Cryptography Standards (PKCS) #5 Password-Based
Key Derivation Function 2 (PBKDF2) with the Hash-based Message
Authentication Code (HMAC) Secure Hash Algorithm (SHA-1) pseudo-
random function, called PBKDF2 in what follow for brevity.

Protocol:

Client C Server S

privC
R←− [p− 1] privS

R←− [p− 1]

pubC := gprivC
C,pubC−−−−−→

pubS := gprivS

pub∗
S

:= EPBKDF2(ssid||pwd)(pubS)
S,pub∗

S←−−−−− KS := pub
privS
C

pubS := DPBKDF2(ssid||pwd)(pub
∗
S

)

KC := pub
privC
S

Auth := H1(ssid||C||S||pubC||pubS||KC)
skC := H0(ssid||C||S||pubC||pubS||KC)

completed
Auth−−−−→

if (Auth = H1(ssid||C||S||pubC||pubS||KS))
then skS := H0(ssid||C||S||pubC||pubS||KS)

completed

else error

Figure 5.4: Password-Authenticated Key Exchange Protocol

54
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

of the the finite cyclic group in which the operation are performed, p the prime
number order of this group, priv_key and pub_key the private and public DH
values respectively.

In our implementation, we use the OpenSSL functions DH_generate_key and
DH_compute_key. Given a DH structure with p and g set, DH_generate_key
generates a valid private DH value and the corresponding public DH value. Given
the private DH value of a party and the public DH value of the other one,
DH_compute_key computes the shared secret DH key.

The OpenSSL functions EVP_DigestInit_ex, EVP_DigestUpdate and EVP_Di-
gestFinal_ex8 allow to hash an arbitrary number of strings of different size. To
implement the H0 and H1 hash functions, which are applied to the message
z = ssid||C||S||pubC||pubS||Kj, with j ∈ {C,S} depending on which party com-
putes it, we use a single cryptographic hash function h. Following the standard
showed in [33], we calculate

Hi(z) = h(i||length(z)||z||z),

for i ∈ {0, 1}, i.e. we compute the value of Hi(z) by simply applying the crypto-
graphic hash function h to the concatenation of the index i, the value length(z),
the length in bit of the message z, and two times the message z. By the cryp-
tographic hash function properties, even a small change in the input message
drastically change the corresponding output, by the avalanche effect.

By default, we use SHA-1 as cryptographic hash function but it is possible to
use also other functions, e.g. SHA-256 or MD5. In our implementation, Client
can choose them as command line argument when she runs the protocol.

To perform encryption and decryption on the Server's public DH value, we
use the OpenSSL EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFi-
nal_ex and EVP_DecryptInit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex
functions respectively9.

To compute the key and the initial vector (IV) needed by these functions
together with a cipher, we use the OpenSSL PKCS5_PBKDF2_HMAC_SHA1 function,
which implements the PKCS5-PBKDF2-HMAC-SHA-1 pseudo-random function
[101]. It takes as input a secret string pass, a random string salt and a number
of iteration ic and outputs key and IV for a block cipher. It is a deterministic
function, so it produces same output when applied to same input, and therefore
Client and Server can use it to obtain the same key and IV.

To the best of our knowledge, there is not yet an official documentation about
this function. The input salt and ic increase the cost of producing the output

8To use these functions, one needs to initialize and then to clean up a message digest context
EVP_MD_CTX.

9As for hashing, to use these functions, one needs to initialize and then clean up a cipher
context EVP_CIPHER_CTX.

5.2. IMPLEMENTATION 55

but also the cost of the difficulty of an attack. The random string salt is designed
to avoid some attacks on password based encryption, e.g. if the same password
is used multiple times or if password has low entropy, it should be a random
string of at least 64 bits. The iteration counter ic makes the calculation of the
key longer, to slow down brute force attacks, it should be a number greater than
1000.

In our setting, we do not use any salt as Client and Server cannot agree on the
same one, keeping it secret to the adversary, without increasing the complexity
of the protocol, and we set ic to be equal to 10000, it will increase the cost of
brute-force attack significantly, without a noticeable impact for legitimate user.
As secret string pass, we use the concatenation of the sub-session identifier ssid
and the shared password pwd.

By default, as cipher we use the Advanced Encryption Standard (AES) with
a key of 256 bits in the Cipher-block chaining (CBC) mode, but when Client runs
the protocol, she can choose any other cipher, key length and mode of operation
supported by OpenSSL.

5.2.3 Authenticated Key Exchange from Weak Key Ex-

change and Password-based Authenticated Key Ex-

change

Following the theoretical work of [42], in our implementation of the AKE protocol
(see Figure 5.5), two parties, sharing a large file, run a WKE protocol to derive
a shared password, with high min-entropy from the adversary point of view, and
then they use this password in a UC-PAKE protocol to compute a shared secret
key and to provide client-to-server authentication.

Before running the WKE protocol, Client selects the parameters of the pro-
tocols and sends them to Server, in one round. Our WKE construction, based
on that one in [42], is a two round protocol and the PAKE protocol that we
implemented from [2] is a three round protocol. Two more rounds are needed
to exchange nonce, for a total of 8 rounds. However, we have moved the first
round and the exchange of nonce in the WKE protocol, using three rounds less,
for a total of 5 rounds. The AKE protocol construction showed in [42], uses 9
rounds but achieves two-side authentication. In our implementation, only client-
to-server authentication is performed, as only Server receives an error message
in case the parties do not meet the condition to share the same key. To achieve
mutual authentication, we have to add just one round in the PAKE protocol but
then we should carefully check if the security proofs given in [2] and [31] still
hold. However, as stated in [2]: �client-authentication is usually enough in most
cases and often results in more efficient protocols�. We show the analysis of our

56
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

Setup:

• Client and Server share a large file.

• WKE: A Weak Key Exchange protocol.

• PAKE: A Universally Composable Password-based Authenticated Key
Exchange protocol.

Protocol:

1. Client chooses the parameters of the protocols and sends them to
Server.

2. Client and Server run the WKE protocol, obtaining the passwords
PwdC and PwdS, respectively.

3. Client and Server exchange nonces, which are concatenated to form a
sub-session identifier ssid.

4. Client and Server run the PAKE protocol with sub-session identifier
ssid, using the passwords PwdC and PwdS as their inputs, respectively.
Client obtains secret keys skC and Server obtains skS secret key or an
error message.

Figure 5.5: Authenticated Key Exchange Protocol

5.2. IMPLEMENTATION 57

AKE protocol in Section 5.3.3.

Implementation details. Following the OpenSSL standard, we set up a
context object (AKE_CTX) that contains all the structures and variables that we
need. In this way, we can initialize them all at once, hiding this process to a final
user. To use block ciphers and hash functions in our code, both Client and Server
need to load the internal OpenSSL table of digest algorithms and ciphers and then
to clean it at the end of the process, using the OpenSSL OpenSSL_add_all_al-

gorithms and EVP_cleanup functions respectively.

Client: Once Client has initialized the AKE_CTX context, she chooses the
parameters of the protocols10:

- security parameter,

- leakage parameters,

- (number of bits of) group order,

- hash functions,

- cipher,

connects herself to Server by a stream socket11 [157] and sends the parameters
to Server.
After running WKE and PAKE protocols, Client needs to erase data and to free
the memory that she has allocated in the AKE_CTX context.

Server: After the initialization of the AKE_CTX context, Server creates a
stream socket and begins an infinite loop, waiting for connection from clients
who wants to run an AKE protocol to derive a secret shared key. To handle
multiple clients, Server creates a new process for each client who connects to the
stream socket, using the fork function. Each new process is executed indepen-
dently, has its own copy of the AKE_CTX context and exits once the secret shared
key has been computed.

Once Server accepts a connection from a client, she receives the parameters
sent by that client and checks the consistency of security and leakage parameters,

10Client inserts the parameters as command line arguments but she chooses leakage param-
eters interactively, once the program run, as they depend on security parameters and the size
of the shared file.

11Server has already created it and waits for connection from clients.

58
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

to avoid malicious requests12. If the parameters pass the test, Server runs WKE
and PAKE protocols and then, before to exit the process, she cleans the AKE_CTX
context copy of that process, erasing the data and freeing the allocated memory.

The shared large file. In our setting, instead of remember an human-
memorizable password, the parties have to store a large file. A different file is
generated by a server in a setup phase for each client who wants to run an AKE
protocol with that server. As we work in the BRM, the file size could be several
Gigabytes but today the storage devices are pretty cheap and fast and it should
not be a problem for a user to buy one of them suitable for her purpose. However,
the server could provide the client with a USB pen drive which contains the file,
when the client has to run the AKE protocol she simply needs to plug the USB
pen drive into her machine. Moreover, in this case the adversary can retrieve
some information about the file only when the USB pen drive is plugged into the
user's machine. Of course, then the problem is moved to securely store the USB
pen drive, preventing accidental lost or theft, that can occur more frequently
with a USB pen drive than with a whole machine.

The server could use a pseudo-random generator (PRG)13 and a short random
seed to generate the long file but the process should be taken in a leakage-free
contest and the resulting file will not be uniformly random, in contrast with our
assumptions.

An important improvement for the AKE protocol would be the possibility
to refresh the shared file as, even if the file size is large, it could happen that
an adversary was able to compromise the user's machine several times between
different running of the AKE protocol and to retrieve all the secret file or just
enough to break the security of the scheme.

In [42], Cash et al. suggested a way for the parties to refresh the secret file
by simply running the AKE protocol to share a short secret key, expanding it
using a PRG and then xoring the long string obtained with the file and erasing
the short secret key. All the process takes some time and the steps after the
AKE protocol have to be performed only if the AKE protocol succeeds and in
a leakage-free contest. If a PRG based on stream cipher is used, everything can
be done without any needed of extra disk space. We remark that the problem
to securely store data on an hardware device that may leak information is the
subject of Chapter 4 of this thesis.

12In this way, we block an adversary who tries to convince a server to accept to run an AKE
protocol with insecure parameters, i.e. parameters that could allow the adversary to retrieve
some information about the shared password, while running the AKE protocol.

13Informally, a PRG is a deterministic function that expands a short random seed into a
long pseudo-random string that cannot be distinguished efficiently from a truly random string.

5.2. IMPLEMENTATION 59

Bandwith. In [51] Di Crescenzo et al. studied password protocols in the
BRM and suggested to limit the server outgoing bandwidth to improve the re-
silience to an active adversary. Also in our setting we can think about limiting
the bandwidth of the channel, as Client and Server need to exchange only a small
quantity of bytes.

For example, in the default setting the parties exchange at most 778 bytes14:

• 330 bytes (at most) to send the parameters from Client to Server;

• 16 bytes in the WKE protocol:

� 8 bytes from Client to Server to exchange seed and nonce;

� 8 bytes from Server to Client to exchange seed and nonce.

• 432 bytes (at most) in the PAKE protocol:

� 200 bytes from Client to Server to exchange client's name length,
client's name, client's public DH value length and client's public DH
value;

� 216 bytes from Server to Client to exchange server's name length,
server's name, server's encrypted public DH value length and server's
encrypted public DH value;

� 16 bytes from Client to Server to exchange authentication tag.

Therefore, even if we limit the bandwidth between Client and Server at 1024
bytes/sec, it does not affect the efficiency of the AKE protocol but, in a setting
in which we tolerate a large amount of leakage, e.g. 99% of the file size15, an
adversary needs a large amount of time to complete the retrieval process:

• if file size is 1 GB, the adversary needs around 12 days;

• if file size is 10 GB, the adversary needs around 4 months;

• if file size is 50 GB, the adversary needs more than 1 year and half.

14The exact number of bytes depends by the length of the name of: the intput file, the hash
functions and the cipher.

15We will see in the next section that parties running the AKE protocol can achieve such
percentage of leakage tolerance by still accessing a small portion of the shared file, hence
without affecting the efficiency of the protocol.

60
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

5.3 Analysis

5.3.1 Weak Key Exchange

In this section we adapt the security analysis of the WKE protocol of [42] to our
WKE protocol (see Section 5.2.1). We do not introduce a formal security model
as it would be equal to that one introduced in [42] but an interested reader can
easily check that the result obtained in this section make our WKE protocol
straightforwardly secure in that model.

In our construction of the WKE protocol, we use the Direct Product function
DirProd : Σn× [n]t → Σt, which takes as input a source y = (y[1], . . . , y[n]) ∈ Σn

and a set of indexes (i1, . . . , it) ∈ [n]t and outputs (y[i1], . . . , y[it]), the elements
of the source at the provided indexes.
In this section, we show that, choosing appropriate parameters, the elements
output by the Direct Product function have a good min-entropy.

We need the following results:

Lemma 10 (Lemma 1 from [42]). Let X and Y be any two (correlated) random
variables. Suppose that H∞(X) ≥ n, and Y takes values in {0, 1}r. Then for
every ε > 0, with probability at least 1 − ε over y ← Y , H∞(X|Y = y) ≥
(n− r − log(1/ε)).

Lemma 11 (Lemma A.3 from [7]). Let Σ be an alphabet of size q. Let X be
a random variable over Σn and E1 be an arbitrary experiment. Define E2 to be
the experiment where, at the conclusion of E1, a uniformly random R ∈ [n]t

is chosen and given to the predictor. Then for any c > 0, if H̃∞(X|E1) ≥
2cn
t

(log2(q) + log2(n)) + 3c+ 5 then H̃∞(DirProd(X,R)|E2) > c.

Lemma 12 (Lemma 2.2 from [64]). Let A,B be random variables. For any
δ > 0, H∞(A|B = b) is at least H̃∞(A|B) − log2(1/δ) with probability at least
1− δ over the choice of b.

Our result can be stated as follows:

Lemma 13. Let DirProd : Σn × [n]t → Σt be as above and let F be a uniformly
random string in {0, 1}n. Then, for every 0 < β, ε < 1, t < n, λ < n and k > 0,

if n− λ− β ≥ 2kn

t
(1 + log2(n)) + 3k + 5

then H∞(DirProd(F, IC)|(IC , viewA) = (I,V)) > k − ε,

with probability 1− 2−ε, over the choice of I ∈ [n]t and V ∈ {0, 1}λ.

5.3. ANALYSIS 61

Proof. We assume that the file F is generated uniformly at random by Server and
given to Client in a setup phase. As F is uniformly random it has min-entropy
equals to its number of bits, i.e. H∞(F) = n.

Before the beginning of the WKE protocol, the adversary can compromise
the machines of Client and Server, perform any efficient computation on their
internal states and the shared file F but, as we work in the BRM, she can retrieve
at most λ bits of information.
We can think of this λ bits as the output of a circuit chosen by the adversary
and applied to the entire internal state of Client and Server, so also IC , IS and
F (cf. Figure 5.3). Our setting covers also the adaptive case, in which the ad-
versary chooses adaptively several circuits and applies them sequentially once
she intruded into the machines, the only restriction is that the total amount of
bits output by the circuits and then retrieved by the adversary is at most λ.
Hence, by Lemma 10, with probability 1− 2−β taken over the distribution of the
adversary view viewA ← {0, 1}λ, i.e. the vector of the λ bits retrieved by the
adversary from Client and Server, it holds that H∞(F |viewA) ≥ n − λ − β, for
any β. It means that from the adversary's point of view the min-entropy of F
decreases at most of λ + β, after the adversary learns viewA, the vector of the
retrieved λ bits, with probability 1− 2−β.

In our setting we can think of the experiment E1 of Lemma 11 as the random
variable viewA, hence applying Lemma 11, we obtain that for any k > 0,

if H̃∞(F |viewA) ≥ 2kn

t
(1 + log2(n)) + 3k + 5

then H̃∞(DirProd(F, I)|(I, viewA)) > k, (5.2)

where I ∈R [n]t.16

As F is uniformly random and viewA is a vector of λ bits, we have that, from the
adversary's point of view, H̃∞(F |viewA) = H∞(F |viewA) ≥ n − λ − β. Then,
fixing a value for k, equation (5.2) implies that

if n− λ− β ≥ 2kn

t
(1 + log2(n)) + 3k + 5

then H̃∞(DirProd(F, IC)|(IC , viewA)) > k. (5.3)

Now, by fixing δ = 2−ε and applying Lemma 12, we obtain that

H∞(DirProd(F, IC)|(IC , viewA) = (I,V)) ≥ H̃∞(DirProd(F, IC)|(IC , viewA))−ε
(5.4)

16Note that the adversary can learn the parties' seeds observing the channel and then she
can simply calculate the corresponding indexes by applying the formula in equation (5.1). She
can easily retrieve the length of the shared file when she compromises the parties' machines
before they run the protocol.

62
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

with probability 1− 2−ε, over the choice of I ∈ [n]t and V ∈ {0, 1}λ.
Then, combining (5.3) and (5.4), we have that

if n− λ− β ≥ 2kn

t
(1 + log2(n)) + 3k + 5

then H∞(DirProd(F, IC)|(IC , viewA) = (I,V)) > k − ε, (5.5)

with probability 1− 2−ε, over the choice of I ∈ [n]t and V ∈ {0, 1}λ.

In our implementation, we fix k = 2ε, as in this way ε represents the lower
bound of the min-entropy in equation (5.5) and it is the only security parameter
of the protocol. Hence, we finally obtain:

Corollary 2. Let DirProd : Σn× [n]t → Σt be as above and let F be a uniformly
random string in {0, 1}n. Then, for every 0 < β, ε < 1, t < n and λ < n,

if n− λ− β ≥ 4εn

t
(1 + log2(n)) + 6ε+ 5 (5.6)

then H∞(DirProd(F, IC)|(IC , viewA) = (I,V)) > ε, (5.7)

with probability 1− 2−ε, over the choice of I ∈ [n]t and V ∈ {0, 1}λ.

Therefore, even conditioned on the adversary's view (the λ bits retrieved from
the internal state of the parties by the adversary) and the set of t indexes accessed
in the file F by Client, if equation (5.6) holds, PwdC has min-entropy greater
than ε (with probability 1− 2−ε), for any I ′S chosen by the adversary (cf. Figure
5.3). A similar argument applies to PwdS, therefore we conclude that, choosing
appropriate parameters, the elements output by the Direct Product function
have a good min-entropy from an adversary point of view, even after retrieving
λ bit of information from the internal state of Client and Server (before of the
execution of the WKE protocol). It means that the shared passwords obtained
by the parties at the end of the WKE protocol are individually unpredictable for
the adversary, they will be equal if the adversary is passive while they could be
different and correlated if the adversary performs some action on the messages
exchanged between the parties.

Concrete parameters and experimental evaluation

Fixing ε and β, we can choose the level of security that we want to achieve and
then we can study the relation between λ, the number of bits retrieved by the
adversary from the file F , and t, the number of bits of the file F that Client and
Server use to compute their password. We simply set β = 80 to have that with
very large probability 1− 2−80, it holds that H∞(F |viewA) ≥ n− λ− 80. This

5.3. ANALYSIS 63

choice does not affect the efficiency of the protocol as n is much greater than 80.
In our implementation, by default, we set ε = 30, obtaining that with probability
1− 2−30 the min-entropy of PwdC and PwdS is greater than 30 (after the WKE
protocol terminates and even if the adversary has retrieved λ bits from Client
and Server and knows IC and IS), if

n− λ ≥ 120n

t
(1 + log2(n)) + 265. (5.8)

With this ε, setting λ = 0 in equation (5.8), we get that the minimum number
of bits that Client and Server need to access in the file to allow leakage is

tmin =

⌈
120n(1 + log2(n))

n− 265

⌉
,

while setting t = n we get that the maximum leakage tolerated17 in bits is

λmax = bn− 120 log2 n− 385c.
However, Client can choose to set ε to any value greater than 30 when she runs
the protocol. We note that the value k, which represents a lower bound of
the average conditional min-entropy H̃∞(DirProd(F, I)|(I, viewA)), is fixed to
be equal to 2ε, as in this way equation (5.7) holds and ε is the only security
parameter of the protocol (cf. Corollary 2).

Table 5.1 describes

• the values of t computed by applying equation 5.8

• the running time of the AKE protocol evaluated experimentally on an
Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz, with 4GB of RAM, under
the 64-bits version of Ubuntu 11.04

in the standard setting ε = 30 and in an higher level of security setting in which
ε = 80 with leakage λ equals to 99% of the size of the shared �le.

From the analysis of Table 5.1, we can conclude that in our AKE protocol
implementation it is possible to achieve a very high leakage resilience percentage
still accessing a small portion of the shared file, even for ε = 80, as Client and
Server need to use only less than 310 KB18 over the several Gigabytes of the
shared file F to securely run the AKE protocol against an adversary who can
retrieve even up to 99% of the file, as also showed in Figure 5.6.

In Figure 5.7, we show the experimental evaluation of the running time of

17Maximum leakage tolerated means that if the adversary retrieves more than this quantity
of bits, in total both from Client and Server, then equation (5.6) does not hold and hence
no more security is provided, as we cannot say anything about the min-entropy of PwdC and
PwdS , even if Client and Server use all the bits of the shared �le to compute their passwords.

18Client and Server access (at most) 2t bits in the file: t indexes chosen by Client and t
indexes chosen by Server. Some indexes (even all of them) might be equal.

64
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

ε = 30 ε = 80
λ = 99% of n λ = 99% of n

n t WKE PAKE t WKE PAKE

(GB) (KB) (sec) (sec) (KB) (sec) (sec)
1 49,8 42,36 16,71 132,81 43,41 44,33
5 53,21 231,65 17,96 141,88 236,06 47,36
10 54,67 495,2 18,52 145,79 502,2 48,7
15 55,53 724,21 18,67 148,07 752,69 49,41
20 56,14 767,18 18,89 149,7 888,12 50,11
25 56,61 931,86 19,18 150,95 1067,24 50,46
30 56,99 1113,15 19,2 151,98 1286,26 50,84
35 57,32 1257,47 19,24 152,85 1414,54 51,08
40 57,6 1443,07 19,38 153,6 1604,41 51,35
45 57,85 1693,53 19,47 154,27 1795,34 51,37
50 58,07 1819,77 19,69 154,86 1881,3 51,88

Table 5.1: Values of t and running time of the WKE and PAKE protocols, in
the standard setting ε = 30 and in an higher level of security setting ε = 80, for
file size 1GB ≤ n ≤ 50GB and leakage λ = 99% of n.

Figure 5.6: Comparison between the values of t in the standard setting ε = 30
and in an higher level of security setting ε = 80, for file size 1GB ≤ n ≤ 50GB
and leakage λ = 99% of n.

5.3. ANALYSIS 65

(a) WKE protocol running time

(b) PAKE protocol running time

Figure 5.7: Experimental evaluation of the running time of the WKE (Figure
5.7(a)) and PAKE (Figure 5.7(b))protocols. Comparison between the standard
setting ε = 30 and an higher level of security setting ε = 80, for file size 1GB ≤
n ≤ 50GB and leakage λ = 99% of n.

66
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

the WKE and PAKE protocols, comparing the standard setting ε = 30 with an
higher level of security setting ε = 80, for file size 1GB ≤ n ≤ 50GB and leakage
λ = 99% of n. From this comparison, we note that the request of an higher level
of security does not affect significantly the efficiency of our AKE protocol. We
would like to note that, despite the fact that the total amount of time needed to
run the protocol looks expensive (around 30 minutes for large n), a very large
amount of time is used to perform the WKE protocol, while the PAKE protocol
is drastically faster (it takes only from few seconds to less than a minute). The
WKE protocol is expensive, in terms of time, because it performs the accesses
to the disk, the most expensive operation of our protocol. Therefore, to improve
the efficiency of the AKE protocol it is sufficient to optimize this operation, e.g.
using hardware which allows faster disk access time or mapping the whole shared
file in the memory (but then one should study also the additional leakage of such
operation). However, in section 5.3.3 we show that Client and Server needs to
compute the shared keys only once, as the keys remain secure even if, after the
end of the AKE protocol, the adversary retrieves all the shared file.

5.3.2 Password-based Authenticated Key Exchange

In our implementation of the AKE protocol, we use the UC-PAKE protocol
of Abdalla et al. showed in [2]. As noted in [42], we need to use a UC-PAKE
protocol instead of simply a standard PAKE protocol, as the passwords output by
the WKE protocol and then used by the PAKE protocol, in our implementation
of the AKE protocol, could be arbitrary correlated and, unlike more traditional
models, in the UC framework there are �no assumptions on the distribution on
the passwords� used by the parties.

In [2], the authors presented an �ideal functionality� FCAuthPAKE (see Figure 5.8)
for PAKE protocol with client authentication (which extends that one in [40])
and then they proved that the protocol showed in Section 5.2.2 securely realizes
such �ideal functionality�19, against adaptive adversaries.

To provide a random oracle and an ideal cipher to the parties, in their proof
Abdalla et al. use the ideal functionalities FRO (already introduced in [96], see
Figure 5.9) and FIC (see Figure 5.10). Clearly, the random oracle model and the
ideal model UC-emulates FRO and FIC respectively.

The functionality FCAuthPAKE provides that:

• the parties receive the same uniformly distributed random key if they share
the same password and the adversary does not corrupt one of them and

19Technically, they prove that the protocol securely realizes the multi-session extension of
the functionality, in the joint state version of the UC framework (see Section 2.4).

5.3. ANALYSIS 67

FCAuth
PAKE owns a list L initially empty of values of the form (Pi, Pj , pwd).

• Upon receiving a query (NewSession, ssid, Pi, Pj, pwd, role) from Pi:

� Send (NewSession, ssid, Pi, Pj , role) to A.
� If this is the first NewSession query, or if it is the second NewSession query

and there is a record (Pj , Pi, pwd
′, role) ∈ L, then record (Pi, Pj , pwd, role)

in L and mark this record fresh.

• Upon receiving a query (TestPwd, ssid, Pi, pwd
′) from the adversary A:

If there exists a record of the form (Pi, Pj , pwd, role) ∈ L which is fresh, then do:

� If pwd = pwd′, mark the record compromised and reply to A with �correct
guess�.

� If pwd 6= pwd′, mark the record interrupted and reply to A with �wrong
guess�.

• Upon receiving a query (NewKey, ssid, Pi, sk) from A, where |sk| = k:
If there is a record of the form (Pi, Pj , pwd, role) ∈ L, and this is the first NewKey
query for Pi, then:
If role = client :

� If the session is compromised, or if one of the two players Pi or Pj is cor-
rupted, then send (ssid, sk) to Pi, record (Pi, Pj , pwd, client, completed)
in L, as well as (ssid, Pi, pwd, sk, client, status, ready) (with status being
the status of the session at that moment.

� Else, if the session is fresh or interrupted, choose a ran-
dom key sk′ whose length is k and send (ssid, sk′) to
Pi. Record (Pi, Pj , pwd, client, completed) in L, as well as
(ssid, Pi, pwd, sk

′, client, status, ready) where status stands for fresh or
interrupted;

If role = server :

� If the session is compromised, if one of the two players Pi or Pj is cor-
rupted, and if there are two records of the form (Pi, Pj , pwd, server)
and (Pj , Pi, pwd

′, client), set s = sk. Otherwise, if the ses-
sion is fresh and there exists any recorded element of the form
(ssid, Pj , pwd

′, sk′, client, fresh, ready), set s = sk′.

∗ If pwd = pwd′, send (ssid, s) to Pi, record
(Pi, Pj , pwd, server, completed) in L, as well as
(ssid, Pi, pwd, s, server, status).

∗ If pwd 6= pwd′, send (ssid, error) to Pi, record
(Pi, Pj , pwd, server, completed) in L, as well as
(ssid, Pi, pwd, server, status).

� if the session is fresh and there does not exist any recorded element of the
form (ssid, Pj , pwd

′, sk′, client, fresh, ready), then do not do anything.

� If the session is interrupted then send (ssid, error) to
player Pi, and record in L (Pi, Pj , pwd, server, completed) and
(ssid, Pi, pwd, server, error, completed).

Figure 5.8: Ideal functionality FCAuthPAKE: it is parametrizes by a security parameter
k. It interacts with an adversary A and a set of parties P1, . . . , Pn. (from [2])

68
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

The functionality FRO proceeds as follows, running on security parameters
k, with parties P1, . . . , Pn and an adversary A:

• FRO keeps a list L (which is initially empty) of pairs of bitstrings.

• Upon receiving a value (ssid,m) (with m ∈ {0, 1}∗) from some party
Pi or from A, do:

� If there is a pair (m, v) for some v ∈ {0, 1}k in the list L, set
v := v.

� If there is no such pair, choose uniformly v ∈ {0, 1}k and store
the pair (m, v) ∈ L.

Once v is set, reply to the activating machine (i.e., either Pi or A) with
(ssid, v).

Figure 5.9: Functionality FRO (from [2])

she does not make any attempts to guess their passwords;

• Server receives an error message if the parties share different passwords or
the adversary tries to guess the parties' passwords but fails (she has only
one attempt) 20;

• the parties receive the same key chosen by the adversary if the adversary
corrupts one party (and the parties share the same password) or she cor-
rectly guesses a party's password (with only one try allowed).

Moreover, FCAuthPAKE allows an adversary, who does not corrupt the players and
who does not correctly guess their passwords, to learn only when the parties
start the PAKE protocol. We note that even if the adversary simply fails to
guess the password of one party, without compromises the protocol, then the
Server aborts the protocol. In this way, the functionality provides the client-
to-server authentication, as Server accepts a key only if Client shares the same
one.

As the functionality of [2] does not provide the passwords to the parties, it
models the case in which the parties run the protocol with different or correlated
passwords.

20However, Client receives a uniformly distributed random key as the authentication is only
client-to-server.

5.3. ANALYSIS 69

The functionality FIC takes as input the security parameter k, and interacts with

an adversary A and with a set of (dummy) parties P1, . . . , Pn by means of these

queries:

• FIC keeps a (initially empty) list L containing 3-tuples of bitstrings and a

number of (initially empty) sets Ckey,ssid, Mkey,ssid.

• Upon receiving a query (ssid, ENC, key,m) (with m ∈ {0, 1}k) from

some party Pi or A, do:

� If there is a 3-tuple (key,m, c) for some c ∈ {0, 1}k in the list L, set
c := c.

� If there is no such record, choose uniformly c in {0, 1}k − Ckey,ssid
which is the set consisting of ciphertexts not already used with key and

ssid. Next, it stores the 3-tuple (key,m, c) ∈ L and sets Ckey,ssid ←
Ckey,ssid ∪ {c}.

Once c is set, reply to the activating machine with (ssid, c).

• Upon receiving a query (ssid,DEC, key, c) (with c ∈ {0, 1}k) from

some party Pi or A, do:

� If there is a 3-tuple (key, m̃, c) for some m̃ ∈ {0, 1}k in the list L, set
m := m̃.

� If there is no such record, choose uniformly m in {0, 1}k −Mkey,ssid

which is the set consisting of plaintexts not already used with key and

ssid. Next, it stores the 3-tuple (key,m, c) ∈ L and sets Mkey,ssid ←
Mkey,ssid ∪ {m}.

Once m is set, reply to the activating machine with (ssid,m).

Figure 5.10: Functionality FIC (from [2])

70
CHAPTER 5. AUTHENTICATED KEY EXCHANGE IMPLEMENTATION

IN THE BOUNDED-RETRIEVAL MODEL

5.3.3 Authenticated Key Exchange

In this section, following the proof sketched in [42], we show that the keys output
by the AKE protocol of Figure 5.5 are indistinguishable from random to an
adversary point of view (and equal), if the parties accept them.

In our AKE protocol, we use a UC-PAKE protocol, therefore we can substi-
tute its execution with calls to the ideal functionality FCAuthPAKE of Figure 5.8, using
PwdC and PwdS of Figure 5.3, the weak keys output by the WKE protocol,
as the passwords for the NewSession query of Pi and Pj, respectively. By the
definition of FCAuthPAKE, only if an adversary corrupts a party or correctly guesses
the password of one of the parties (before the end of the PAKE protocol) then
she can choose the output keys of the parties. Otherwise, the keys output by the
ideal functionality are indistinguishable from random to the adversary (or Server
simply does not accept any key). To guess the passwords used by the parties
in the PAKE protocol, the adversary has only one attempt, using the TestPwd

query (cf. Figure 5.8). By the analysis of the WKE protocol (see Lemma 13),
we know that the passwords output by the WKE protocol, and then used in
the PAKE protocol, have (with high probability 1− 2−ε, where ε is the security
parameter21) a min-entropy equals to ε conditioned on the adversary view be-
fore the call to FCAuthPAKE, which is equal to the adversarial view after the WKE
protocol plus the nonces exchanged between the parties to create the random
ssid, and this holds even after that the adversary retrieves up to λ bits from
the internal state of the parties and the shared file F , before the beginning of
the WKE protocol. Therefore, an adversary can correctly guess in one attempt
the passwords used in the PAKE protocol only with very low probability, cho-
sen by Client. Then we can conclude that the keys skC and skS obtained by
the parties at the end of the AKE protocol, are indistinguishable from random
to the adversary. Moreover, these keys are equal as otherwise Server receives an
error message (and rejects the key), providing the client-to-server authentication.

Finally, we note that even after the end of the AKE protocol, the adversary
can never distinguish skC and skS from random. Indeed, if, after the end of
the AKE protocol, an adversary retrieves the bits of the shared file used in the
AKE protocol to compute the passwords output by the WKE protocol (without
violating the retrieval bound), she can clearly compute the passwords but still
she cannot distinguish the secret keys obtained by the parties from random, as
they have been chosen at random by the functionality FCAuthPAKE. If we look at
the UC-PAKE protocol, it means that even if the adversary learns, after the
execution of the protocol, the value of the passwords used in the protocol, she

21We remind that by default we set ε equal to 30 but Client can choose an arbitrary value,
greater than 30, when she runs the protocol.

5.3. ANALYSIS 71

cannot distinguish the output keys from random, as the protocol, from her point
of view, becomes a DH key exchange (see Figure 5.1), as now she can decrypt
the Server's public DH value, and we rely on the CDH assumption (see Section
2.2).

Even if the adversary is given all the shared file, still the security guarantees
of the completed AKE protocol hold but then, of course, there is no more security
for future running of the protocol, as the retrieval bound requirement is gone.

Chapter 6

Conclusion and future work

The study of the side-channel attacks showed that the black-box model of the
provable security approach is not enough for real-world implementation. Indeed,
in the last years, several cryptographic schemes that were proven secure in the
black-box model have been broken exploiting additional leakage information from
the physical implementation of the scheme. Today, one of the main challenge of
the cryptographic community is to combine the analysis of physical leakage with
provable security, to design schemes that remains secure even after the imple-
mentation in the real world, where physical devices may leak information. After
a period in which mostly the practitioners were involved in this study, exploiting
side-channel measurements and countermeasures, recently also the theoretician
began to proposed new formal models to extend the provable security to the
side-channel attacks settings. However, in most cases, theoretical results are
provable secure but are based on several assumptions on the type of leakage and
often achieve complicated schemes, while practical works consider efficient but
simple schemes, often without formal models and proofs. To further improve this
research area and the design of a provable secure and efficiently implementable
cryptography, the interaction between theoretician and practitioners is needed,
for example, to better understand which theoretical assumptions are empirically
verifiable and which constructions can be instantiated or implemented in practice.

We consider our work as a contribution to this emerging field, as a step to
bridge the gap between theory and practice in this area, which is one of the topic
on which the cryptographic community's interest is growing very fast.

In Chapter 4, we introduced a new primitive to securely store data on an
hardware that may leak information. We showed the security of two construc-
tions, respectively in the setting where

• the adversarial leakage functions are applied independently to different

73

74 CHAPTER 6. CONCLUSION AND FUTURE WORK

parts of the system's memory;

• the size of the class of adversarial leakage functions is restricted, considering
computationally bounded functions, e.g. functions computable by circuits
of small size.

Our security proofs are information-theoretic, rely on deterministic extractors
and are developed in the model where the total amount of leakage is bounded.

Our first construction is instantiated with two-source extractors and assumes
that different parts of the memory leaks independently. This is a bit controversial
assumption as, even if it captures any affine leakage functions, recent practical
works (e.g. [147]) showed that this restriction does not model some non-linear
physical leakage. However, as noted in [70], this limitation holds if one assumes
that the logical gates of a system leaks independently and it could be less prob-
lematic when assuming that (at higher hardware level) different parts of the
memory leaks independently.

Recently, Dziembowski and Faust [70] extended our result based on two-
source extractors in the continual leakage model, where the total amount of
leakage is unbounded (this is bounded only per time period) and there exists a
way to refresh the internal state of the system. However, also this work relies on
the assumption that different parts of the memory leaks independently and uses
some leak-free hardware components.

We note that Dodis et al. [63] introduced a method for storing (and refresh-
ing) a secret, shared between several devices (or different parts of a single device),
in the continual memory-leakage model, where all the memory can leak and the
total amount of leakage is unbounded, which does not use leak-free components,
but it is rather inefficient and it is not information-theoretic secure, as it relies
on non-standard assumptions. In particular, in [63] is shown that it is impossible
to achieve an information-theoretically secure sharing storage scheme resilient to
leakage in the continual memory-leakage model if during the refreshing phase
there is no communication between the parties who share the secret data.

As future research direction, we think it is interesting to study whether it
is possible to combine the results of [70] and [63]. Moreover, it is also worthy
to improve those schemes, for example, allowing a larger quantity of leakage,
in total or during the update phase, using weaker assumptions or avoiding the
use of leak-free hardware components. An other research question is whether it
is possible to obtain information-theoretically secure sharing schemes, as those
one described in [63], if the parties who share the secret data can interactively

75

perform the refreshing phase.

Our second construction holds in the bounded memory-leakage model, where
the total amount of leakage is bounded but all the memory can leak. There are
still few works which consider computationally bounded leakage functions, even
though it seems a very promising approach as it models practical attacks, which
are mostly described by simple aggregate functions, and avoids artificial attacks
not feasible in practice. Our construction come with formal security proofs, but
the analysis of concrete parameters does not seem to allow for efficient feasibility
of these schemes in practice.

As discussed in Section 4.5, we think that the idea to model the leakage as
computationally bounded functions, instead of polynomial-time ones, and the
study of realistic classes of such functions, is an interesting research direction,
as it avoids to give too much computational power to an attacker and allows the
analysis of real leakage measurement that are exploited in practice.

In Chapter 5, we discussed our implementation of an Authenticated Key
Exchange protocol in the C programming language, using the cryptographic
library of the OpenSSL project. The implemented AKE protocol is based on a
Weak Key Exchange protocol, constructed following the work of [42] which uses
less randomness but is not efficiently implementable, and on the Password-based
Authenticated Key Exchange showed secure in the UC framework in [2], and
allows a client and a server, who share a huge secret file, to securely compute
a shared key, providing client-to-server authentication, also in the presence of
active attackers.

Recently, Dziembowski et al. [71] introduced a new model, which assumes
that �the leakage can be any arbitrary space bounded computation that can
make random oracle calls itself�, and showed a key-evolution scheme secure in
this model. We think it is an interesting question whether it is possible to use
the construction of [71] in the AKE protocol implemented in Chapter 5 to evolve
the long shared key and to obtain security against an unbounded amount of total
leakage.

Appendix A

Omitted Proofs

A.1 Proofs for Chapter 4

A.1.1 Proof of Lemma 1

Before showing this lemma let us first prove the following:

Lemma 14. For every random variable X and events E ,V we have

d(X|V) ≤ d(X|V ∧ E) +Pr
[
E|V

]
. (A.1)

Proof. It is enough to show that

∆(PX|V ;PX|V∧E) ≤ Pr
[
E|V

]
. (A.2)

After showing this we will be done, since from the triangle inequality we have

=d(X|V)︷ ︸︸ ︷
∆(PX|V ;UX) ≤

=d(X|V∧E)︷ ︸︸ ︷
∆(PX|V∧E ; UX) +∆(PX|V ;PX|V∧E),

where UX denotes the uniform distribution over X . Let F denote the set

{x : Pr [X = x|V] > Pr [X = x|V ∧ E]} .

77

78 APPENDIX A

We have that the left-hand side of (A.2) is equal to

∑
x∈F

Pr [X = x|V]−

=
Pr[X=x∧E|V]

Pr[E|V] ≥Pr[X=x∧E|V]︷ ︸︸ ︷
Pr [X = x|V ∧ E] (A.3)

≤
∑
x∈F

Pr [X = x|V]−Pr [X = x ∧ E|V] (A.4)

=
∑
x∈F

Pr [X = x|V]−
∑
x∈F

Pr [X = x ∧ E|V] (A.5)

= Pr [X ∈ F|V]−Pr [(X ∈ F) ∧ E|V] (A.6)

≤ Pr
[
E|V

]
. (A.7)

Proof of Lemma 1. The right-hand side of (4.2) is equal to∑
y

d(X|Y = y) ·Pr [Y = y] , (A.8)

and the left-hand side of (4.2) is equal to∑
y

(
d(X|(Y = y) ∧ E) +Pr

[
E|Y = y

])
·Pr [Y = y] . (A.9)

To finish the proof it suffices to show that for every y we have

d(X|(Y = y) ∧ E) +Pr
[
E|Y = y

]
≥ d(X|Y = y).

This follows directly from Lemma 14, with V being the event that Y = y.

A.1.2 Proof of Lemma 6

Proof. We prove that (4.4) holds for a fixed w. This clearly implies that (4.4)
holds when W is a random variable independent on X. Since |f(X,w)| ≤ λ,
hence the number of all y's is at most equal to 2λ. Therefore the number of x's
for which there exists some y such that

|x : f(x,w) = y| ≤ 2k (A.10)

holds is at most 2λ+k. Hence the probability that for a random X we have
that (A.10) holds is at most 2λ+k−n. Since clearly if (A.10) does not hold then
H∞(X|f(X,w) = y) > k we get that

Py:=f(X,w)(H∞(X|f(X,w) = y) ≤ k) ≤ 2λ+k−n.

Thus we are done.

Bibliography

[1] 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA (2010), IEEE
Computer Society.

[2] Abdalla, M., Catalano, D., Chevalier, C., and Pointcheval,
D. E�cient two-party password-based key exchange protocols in the UC
framework. In CT-RSA (2008), T. Malkin, Ed., vol. 4964 of Lecture Notes
in Computer Science, Springer, pp. 335�351.

[3] Abdalla, M., and Pointcheval, D. Simple password-based encrypted
key exchange protocols. In CT-RSA (2005), A. Menezes, Ed., vol. 3376 of
Lecture Notes in Computer Science, Springer, pp. 191�208.

[4] Abe, M., Ed. Advances in Cryptology - ASIACRYPT 2010 - 16th In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 5-9, 2010. Proceedings (2010),
vol. 6477 of Lecture Notes in Computer Science, Springer.

[5] Akavia, A., Goldwasser, S., and Vaikuntanathan, V. Simultane-
ous hardcore bits and cryptography against memory attacks. In Theory
of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San
Francisco, CA, USA, March 15-17, 2009. Proceedings (2009), O. Reingold,
Ed., vol. 5444 of Lecture Notes in Computer Science, Springer, pp. 474�495.

[6] Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., and
Wichs, D. Public-key encryption in the bounded-retrieval model. In
Gilbert [85], pp. 113�134.

[7] Alwen, J., Dodis, Y., and Wichs, D. Leakage-resilient public-key
cryptography in the bounded-retrieval model. In Halevi [92], pp. 36�54.

[8] Anderson, R., and Kuhn, M. Tamper resistance: a cautionary note. In
WOEC'96: Proceedings of the 2nd conference on Proceedings of the Second

79

80 BIBLIOGRAPHY

USENIX Workshop on Electronic Commerce (Berkeley, CA, USA, 1996),
USENIX Association, pp. 1�11.

[9] Aumann, Y., Ding, Y. Z., and Rabin, M. O. Everlasting security in
the bounded storage model. IEEE Transactions on Information Theory
48, 6 (2002), 1668�1680.

[10] Barak, B., Shaltiel, R., and Tromer, E. True random number gen-
erators secure in a changing environment. In CHES (2003), C. D. Walter,
Ç. K. Koç, and C. Paar, Eds., vol. 2779 of Lecture Notes in Computer
Science, Springer, pp. 166�180.

[11] Bellare, M., and Miner, S. K. A forward-secure digital signature
scheme. In Wiener [156], pp. 431�448.

[12] Bellare, M., Pointcheval, D., and Rogaway, P. Authenticated key
exchange secure against dictionary attacks. In Preneel [132], pp. 139�155.

[13] Bellare, M., and Rogaway, P. Entity authentication and key distri-
bution. In CRYPTO (1993), D. R. Stinson, Ed., vol. 773 of Lecture Notes
in Computer Science, Springer, pp. 232�249.

[14] Bellare, M., and Rogaway, P. Random oracles are practical: a
paradigm for designing e�cient protocols. In Proceedings of the 1st ACM
conference on Computer and communications security (New York, NY,
USA, 1993), CCS '93, ACM, pp. 62�73.

[15] Bellare, M., and Rogaway, P. Provably secure session key distribu-
tion: the three party case. In STOC '95: Proceedings of the Twenty-Seventh
Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995,
Las Vegas, Nevada, USA (1995), ACM, pp. 57�66.

[16] Bellare, M., and Rogaway, P. The AuthA protocol for password-
based authenticated key exchange. In Contributions to IEEE P1363 (2000).

[17] Bellare, M., and Rompel, J. Randomness-e�cient oblivious sampling.
In FOCS '94: Proceedings of 35th Annual Symposium on Foundations of
Computer Science, 20-22 November 1994, Santa Fe, New Mexico, USA
(1994), IEEE, pp. 276�287.

[18] Bellare, M., and Yee, B. S. Forward-security in private-key cryptog-
raphy. In CT-RSA (2003), M. Joye, Ed., vol. 2612 of Lecture Notes in
Computer Science, Springer, pp. 1�18.

BIBLIOGRAPHY 81

[19] Bellovin, S. M., and Merritt, M. Augmented encrypted key ex-
change: A password-based protocol secure against dictionary attacks and
password �le compromise. In ACM Conference on Computer and Commu-
nications Security (1993), pp. 244�250.

[20] Biham, E., and Shamir, A. Di�erential cryptanalysis of des-like cryp-
tosystems. J. Cryptology 4, 1 (1991), 3�72.

[21] Black, J. The ideal-cipher model, revisited: An uninstantiable
blockcipher-based hash function. In FSE (2006), M. J. B. Robshaw, Ed.,
vol. 4047 of Lecture Notes in Computer Science, Springer, pp. 328�340.

[22] Black, J., Rogaway, P., and Shrimpton, T. Black-box analysis of
the block-cipher-based hash-function constructions from PGV. In Yung
[160], pp. 320�335.

[23] Blum, M. Independent unbiased coin �ips from a correlated biased source:
a �nite state markov chain. In FOCS '84: Proceedings of 25th Annual Sym-
posium on Foundations of Computer Science, 24-26 October 1984, Singer
Island, Florida, USA (1984), IEEE, pp. 425�433.

[24] Boneh, D., Ed. Advances in Cryptology - CRYPTO 2003, 23rd Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 17-21, 2003, Proceedings (2003), vol. 2729 of Lecture Notes in Com-
puter Science, Springer.

[25] Boneh, D., DeMillo, R. A., and Lipton, R. J. On the importance
of checking cryptographic protocols for faults (extended abstract). In EU-
ROCRYPT (1997), pp. 37�51.

[26] Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., and Smith, A. Se-
cure remote authentication using biometric data. In Cramer [48], pp. 147�
163.

[27] Boyko, V., MacKenzie, P. D., and Patel, S. Provably secure
password-authenticated key exchange using di�e-hellman. In Preneel [132],
pp. 156�171.

[28] Boyle, E., Segev, G., and Wichs, D. Fully leakage-resilient signatures.
In EUROCRYPT (2011), K. G. Paterson, Ed., vol. 6632 of Lecture Notes
in Computer Science, Springer, pp. 89�108.

[29] Brakerski, Z., and Goldwasser, S. Circular and leakage resilient
public-key encryption under subgroup indistinguishability (or: Quadratic
residuosity strikes back). In Rabin [135], pp. 1�20.

82 BIBLIOGRAPHY

[30] Brakerski, Z., Kalai, Y. T., Katz, J., and Vaikuntanathan, V.
Overcoming the hole in the bucket: Public-key cryptography resilient to
continual memory leakage. In FOCS '10 [1], pp. 501�510.

[31] Bresson, E., Chevassut, O., and Pointcheval, D. Security proofs
for an e�cient password-based key exchange. In ACM Conference on Com-
puter and Communications Security (2003), S. Jajodia, V. Atluri, and
T. Jaeger, Eds., ACM, pp. 241�250.

[32] Bresson, E., Chevassut, O., and Pointcheval, D. New security
results on encrypted key exchange. In Public Key Cryptography (2004),
F. Bao, R. H. Deng, and J. Zhou, Eds., vol. 2947 of Lecture Notes in
Computer Science, Springer, pp. 145�158.

[33] Brusilovsky, A., Faynberg, I., and Zeltsan, Z. Password-
Authenticated Key (PAK) Di�e-Hellman Exchange RFC5683, February
2010.

[34] Cachin, C., and Maurer, U. M. Unconditional security against
memory-bounded adversaries. In CRYPTO (1997), B. S. K. Jr., Ed.,
vol. 1294 of Lecture Notes in Computer Science, Springer, pp. 292�306.

[35] Canetti, R. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS (2001), pp. 136�145.

[36] Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., and Sahai,
A. Exposure-Resilient Functions and All-Or-Nothing Transforms. In EU-
ROCRYPT (2000), pp. 453�469.

[37] Canetti, R., Goldreich, O., and Halevi, S. On the random-oracle
methodology as applied to length-restricted signature schemes. In Naor
[126], pp. 40�57.

[38] Canetti, R., Goldreich, O., and Halevi, S. The random oracle
methodology, revisited. J. ACM 51, 4 (2004), 557�594.

[39] Canetti, R., Halevi, S., and Katz, J. A forward-secure public-key
encryption scheme. J. Cryptology 20, 3 (2007), 265�294.

[40] Canetti, R., Halevi, S., Katz, J., Lindell, Y., and MacKenzie,
P. D. Universally Composable password-based key exchange. In Cramer
[48], pp. 404�421.

[41] Canetti, R., and Rabin, T. Universal composition with joint state. In
Boneh [24], pp. 265�281.

BIBLIOGRAPHY 83

[42] Cash, D., Ding, Y. Z., Dodis, Y., Lee, W., Lipton, R. J., and
Walfish, S. Intrusion-resilient key exchange in the bounded retrieval
model. In TCC (2007), S. P. Vadhan, Ed., vol. 4392 of Lecture Notes in
Computer Science, Springer, pp. 479�498.

[43] Chari, S., Jutla, C. S., Rao, J. R., and Rohatgi, P. Towards
sound approaches to counteract power-analysis attacks. In Wiener [156],
pp. 398�412.

[44] Chor, B., and Goldreich, O. Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity. SIAM J. Comput.
17, 2 (1988), 230�261.

[45] Chor, B., Goldreich, O., Håstad, J., Friedman, J., Rudich, S.,
and Smolensky, R. The bit extraction problem of t-resilient functions
(preliminary version). In FOCS '85: Proceedings of 26th Annual Sympo-
sium on Foundations of Computer Science, 21-23 October 1985, Portland,
Oregon, USA (1985), IEEE, pp. 396�407.

[46] Coron, J.-S., Dodis, Y., Malinaud, C., and Puniya, P. Merkle-
damgård revisited: How to construct a hash function. In CRYPTO (2005),
V. Shoup, Ed., vol. 3621 of Lecture Notes in Computer Science, Springer,
pp. 430�448.

[47] Coron, J.-S., Patarin, J., and Seurin, Y. The random oracle model
and the ideal cipher model are equivalent. In Wagner [154], pp. 1�20.

[48] Cramer, R., Ed. Advances in Cryptology - EUROCRYPT 2005, 24th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings
(2005), vol. 3494 of Lecture Notes in Computer Science, Springer.

[49] Davì, F., Dziembowski, S., and Venturi, D. Leakage-resilient storage.
In SCN (2010), J. A. Garay and R. De Prisco, Eds., vol. 6280 of Lecture
Notes in Computer Science, Springer, pp. 121�137.

[50] Desai, A. The security of all-or-nothing encryption: Protecting against
exhaustive key search. In CRYPTO (2000), M. Bellare, Ed., vol. 1880 of
Lecture Notes in Computer Science, Springer, pp. 359�375.

[51] Di Crescenzo, G., Lipton, R. J., and Walfish, S. Perfectly secure
password protocols in the bounded retrieval model. In Halevi and Rabin
[93], pp. 225�244.

84 BIBLIOGRAPHY

[52] Diffie, W., and Hellman, M. E. New directions in cryptography. IEEE
Transactions on Information Theory 22, 6 (November 1976), 644�654.

[53] Ding, Y. Z. Error correction in the bounded storage model. In TCC
(2005), J. Kilian, Ed., vol. 3378 of Lecture Notes in Computer Science,
Springer, pp. 578�599.

[54] Dodis, Y., Elbaz, A., Oliveira, R., and Raz, R. Improved random-
ness extraction from two independent sources. In Approximation, Random-
ization, and Combinatorial Optimization, Algorithms and Techniques, 7th
International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2004, and 8th International Workshop
on Randomization and Computation, RANDOM 2004, Cambridge, MA,
USA, August 22-24, 2004, Proceedings (2004), vol. 3122 of Lecture Notes
in Computer Science, Springer, pp. 334�344.

[55] Dodis, Y., Franklin, M. K., Katz, J., Miyaji, A., and Yung, M.
Intrusion-resilient public-key encryption. In CT-RSA (2003), pp. 19�32.

[56] Dodis, Y., Goldwasser, S., Kalai, Y. T., Peikert, C., and
Vaikuntanathan, V. Public-key encryption schemes with auxiliary in-
puts. In Micciancio [125], pp. 361�381.

[57] Dodis, Y., Haralambiev, K., López-Alt, A., and Wichs, D. Cryp-
tography against continuous memory attacks. In FOCS '10 [1], pp. 511�
520.

[58] Dodis, Y., Haralambiev, K., López-Alt, A., and Wichs, D. E�-
cient public-key cryptography in the presence of key leakage. In Abe [4],
pp. 613�631.

[59] Dodis, Y., Kalai, Y. T., and Lovett, S. On cryptography with auxil-
iary input. In STOC '09: Proceedings of the 41st annual ACM symposium
on Theory of computing (New York, NY, USA, 2009), ACM, pp. 621�630.

[60] Dodis, Y., Katz, J., Reyzin, L., and Smith, A. Robust fuzzy extrac-
tors and authenticated key agreement from close secrets. In Dwork [67],
pp. 232�250.

[61] Dodis, Y., Katz, J., Xu, S., and Yung, M. Key-insulated public key
cryptosystems. In EUROCRYPT (2002), L. R. Knudsen, Ed., vol. 2332 of
Lecture Notes in Computer Science, Springer, pp. 65�82.

BIBLIOGRAPHY 85

[62] Dodis, Y., Katz, J., Xu, S., and Yung, M. Strong key-insulated
signature schemes. In Public Key Cryptography (2003), Y. Desmedt, Ed.,
vol. 2567 of Lecture Notes in Computer Science, Springer, pp. 130�144.

[63] Dodis, Y., Lewko, A., Waters, B., and Wichs, D. Storing secrets
on continually leaky devices. Accepted at FOCS 2011. IACR Cryptology
ePrint Archive, Report 2011/369, 2011. http://eprint.iacr.org/2011/
369.

[64] Dodis, Y., Ostrovsky, R., Reyzin, L., and Smith, A. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data.
SIAM J. Comput. 38, 1 (2008), 97�139.

[65] Dodis, Y., and Pietrzak, K. Leakage-resilient pseudorandom functions
and side-channel attacks on Feistel networks. In Rabin [135], pp. 21�40.

[66] Dodis, Y., Sahai, A., and Smith, A. On perfect and adaptive security
in exposure-resilient cryptography. In P�tzmann [130], pp. 301�324.

[67] Dwork, C., Ed. Advances in Cryptology - CRYPTO 2006, 26th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 2006, Proceedings (2006), vol. 4117 of Lecture Notes in Com-
puter Science, Springer.

[68] Dziembowski, S. Intrusion-resilience via the bounded-storage model. In
Halevi and Rabin [93], pp. 207�224.

[69] Dziembowski, S. On forward-secure storage. In Dwork [67], pp. 251�270.

[70] Dziembowski, S., and Faust, S. Leakage-resilient cryptography from
the inner-product extractor. In ASIACRYPT (2011), D. H. Lee and
X. Wang, Eds., vol. 7073 of Lecture Notes in Computer Science, Springer,
pp. 702�721.

[71] Dziembowski, S., Kazana, T., and Wichs, D. Key-evolution schemes
resilient to space-bounded leakage. In CRYPTO (2011), P. Rogaway, Ed.,
vol. 6841 of Lecture Notes in Computer Science, Springer, pp. 335�353.

[72] Dziembowski, S., and Maurer, U. M. On generating the initial key in
the bounded-storage model. In EUROCRYPT (2004), C. Cachin and J. Ca-
menisch, Eds., vol. 3027 of Lecture Notes in Computer Science, Springer,
pp. 126�137.

[73] Dziembowski, S., and Maurer, U. M. Optimal randomizer e�ciency
in the bounded-storage model. J. Cryptology 17, 1 (2004), 5�26.

http://eprint.iacr.org/2011/369
http://eprint.iacr.org/2011/369

86 BIBLIOGRAPHY

[74] Dziembowski, S., and Pietrzak, K. Intrusion-resilient secret sharing.
In FOCS '07: Proceedings of 48th Annual IEEE Symposium on Founda-
tions of Computer Science, October 20-23, 2007, Providence, RI, USA
(2007), IEEE Computer Society, pp. 227�237.

[75] Dziembowski, S., and Pietrzak, K. Leakage-resilient cryptography. In
FOCS '08: Proceedings of the 49th Annual IEEE Symposium on Founda-
tions of Computer Science (Washington, DC, USA, 2008), IEEE Computer
Society.

[76] Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh,
M., and Shalmani, M. T. M. On the power of power analysis in the real
world: A complete break of the keeloqcode hopping scheme. In Wagner
[154], pp. 203�220.

[77] European Network of Excellence in Cryptology (ECRYPT).
The Side Channel Cryptanalysis Lounge. A webpage: http://www.emsec.
rub.de/research/projects/sclounge/ accessed on 9.12.2011.

[78] Even, S., and Mansour, Y. A construction of a cioher from a single
pseudorandom permutation. In ASIACRYPT (1991), H. Imai, R. L. Rivest,
and T. Matsumoto, Eds., vol. 739 of Lecture Notes in Computer Science,
Springer, pp. 210�224.

[79] Faust, S. Provable security at implementation-level. PhD thesis,
Katholieke Universiteit Leuven, 2010.

[80] Faust, S., Kiltz, E., Pietrzak, K., and Rothblum, G. N. Leakage-
resilient signatures. In Micciancio [125], pp. 343�360.

[81] Faust, S., Rabin, T., Reyzin, L., Tromer, E., and Vaikun-
tanathan, V. Protecting circuits from leakage: the computationally-
bounded and noisy cases. In Gilbert [85], pp. 135�156.

[82] Gandolfi, K., Mourtel, C., and Olivier, F. Electromagnetic anal-
ysis: Concrete results. In CHES (2001), Ç. K. Koç, D. Naccache, and
C. Paar, Eds., vol. 2162 of Lecture Notes in Computer Science, Springer,
pp. 251�261.

[83] Gennaro, R., and Lindell, Y. A framework for password-based
authenticated key exchange. In EUROCRYPT (2003), E. Biham, Ed.,
vol. 2656 of Lecture Notes in Computer Science, Springer, pp. 524�543.

http://www.emsec.rub.de/research/projects/sclounge/
http://www.emsec.rub.de/research/projects/sclounge/

BIBLIOGRAPHY 87

[84] Gentry, C., Peikert, C., and Vaikuntanathan, V. Trapdoors for
hard lattices and new cryptographic constructions. In STOC '08: Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008 (2008), C. Dwork,
Ed., ACM, pp. 197�206.

[85] Gilbert, H., Ed. Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings
(2010), vol. 6110 of Lecture Notes in Computer Science, Springer.

[86] Goldreich, O., and Lindell, Y. Session-key generation using human
passwords only. In CRYPTO (2001), J. Kilian, Ed., vol. 2139 of Lecture
Notes in Computer Science, Springer, pp. 408�432.

[87] Goldwasser, S., Kalai, Y. T., Peikert, C., and Vaikuntanathan,
V. Robustness of the learning with errors assumption. In ICS (2010),
A. C.-C. Yao, Ed., Tsinghua University Press, pp. 230�240.

[88] Goldwasser, S., and Micali, S. Probabilistic encryption. J. Comput.
Syst. Sci. 28, 2 (1984), 270�299.

[89] Goldwasser, S., and Rothblum, G. N. Securing computation against
continuous leakage. In Rabin [135], pp. 59�79.

[90] Golic, J. D., and Tymen, C. Multiplicative masking and power analysis
of aes. In Kaliski Jr et al. [102], pp. 198�212.

[91] Halderman, A. J., Schoen, S. D., Heninger, N., Clarkson, W.,
Paul, W., Calandrino, J. A., Feldman, A. J., Appelbaum, J., and
Felten, E. W. Lest we remember: cold boot attacks on encryption keys.
Commun. ACM 52, 5 (2009), 91�98.

[92] Halevi, S., Ed. Advances in Cryptology - CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2009. Proceedings (2009), vol. 5677 of Lecture Notes in Computer
Science, Springer.

[93] Halevi, S., and Rabin, T., Eds. Theory of Cryptography, Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7,
2006, Proceedings (2006), vol. 3876 of Lecture Notes in Computer Science,
Springer.

[94] Harkins, D., and Carrel, D. The Internet Key Exchange (IKE).
RFC2409, November 1998.

88 BIBLIOGRAPHY

[95] Harnik, D., and Naor, M. On the compressibility of NP instances and
cryptographic applications. In FOCS '06: Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science (Washington, DC,
USA, 2006), IEEE Computer Society, pp. 719�728.

[96] Hofheinz, D., and Müller-Quade, J. Universally composable com-
mitments using random oracles. In Naor [126], pp. 58�76.

[97] IEEE Standard 1363.2 Study Group. Password-based public-
key cryptography. Webpage: http://grouper.ieee.org/groups/1363/

passwdPK/ accessed on 9.12.2011.

[98] Ishai, Y., Sahai, A., and Wagner, D. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO (2003), pp. 463�481.

[99] Itkis, G., and Reyzin, L. Sibir: Signer-base intrusion-resilient signa-
tures. In Yung [160], pp. 499�514.

[100] Juma, A., and Vahlis, Y. Protecting cryptographic keys against con-
tinual leakage. In Rabin [135], pp. 41�58.

[101] Kaliski, B. PKCS #5: Password-Based Cryptography Speci�cation. Ver-
sion 2.0. RFC2898, September 2000.

[102] Kaliski Jr, B. S., Koç, Ç. K., and Paar, C., Eds. Cryptographic Hard-
ware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers (2003),
vol. 2523 of Lecture Notes in Computer Science, Springer.

[103] Kamp, J., and Zuckerman, D. Deterministic extractors for bit-�xing
sources and exposure-resilient cryptography. SIAM J. Comput. 36, 5
(2007), 1231�1247.

[104] Katz, J., Ostrovsky, R., and Yung, M. E�cient password-
authenticated key exchange using human-memorable passwords. In P�tz-
mann [130], pp. 475�494.

[105] Katz, J., Ostrovsky, R., and Yung, M. Forward secrecy in password-
only key exchange protocols. In SCN (2002), S. Cimato, C. Galdi,
and G. Persiano, Eds., vol. 2576 of Lecture Notes in Computer Science,
Springer, pp. 29�44.

[106] Katz, J., and Vaikuntanathan, V. Signature schemes with bounded
leakage resilience. In ASIACRYPT (2009), M. Matsui, Ed., vol. 5912 of
Lecture Notes in Computer Science, Springer, pp. 703�720.

http://grouper.ieee.org/groups/1363/passwdPK/
http://grouper.ieee.org/groups/1363/passwdPK/

BIBLIOGRAPHY 89

[107] Kelsey, J., Schneier, B., Wagner, D., and Hall, C. Side channel
cryptanalysis of product ciphers. Journal of Computer Security 8 (2000),
141�158.

[108] Kilian, J., and Rogaway, P. How to protect DES against exhaustive
key search. In Koblitz [111], pp. 252�267.

[109] Kiltz, E., and Pietrzak, K. Leakage resilient ElGamal encryption. In
Abe [4], pp. 595�612.

[110] Kivinen, T., and Kojo, M. More Modular Exponential (MODP) Di�e-
Hellman groups for Internet Key Exchange (IKE). RFC3526, May 2003.

[111] Koblitz, N., Ed. Advances in Cryptology - CRYPTO '96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 18-22, 1996, Proceedings (1996), vol. 1109 of Lecture Notes in Com-
puter Science, Springer.

[112] Kocher, P. C. Timing attacks on implementations of Di�e-Hellman,
RSA, DSS, and other systems. In Koblitz [111], pp. 104�113.

[113] Kocher, P. C., Jaffe, J., and Jun, B. Di�erential power analysis. In
Wiener [156], pp. 388�397.

[114] Lewko, A. B., Lewko, M., and Waters, B. How to leak on key
updates. In STOC '11: Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011 (2011),
L. Fortnow and S. P. Vadhan, Eds., ACM, pp. 725�734.

[115] Lewko, A. B., Rouselakis, Y., and Waters, B. Achieving leakage
resilience through dual system encryption. In TCC (2011), Y. Ishai, Ed.,
vol. 6597 of Lecture Notes in Computer Science, Springer, pp. 70�88.

[116] Loosemore, S., Stallman, R. M., McGrath, R., Oram, A., , and
Drepper, U. The GNU C library reference manual. http://www.gnu.
org/s/libc/manual/ accessed on 9.12.2011.

[117] Lu, C.-J. Encryption against storage-bounded adversaries from on-line
strong extractors. J. Cryptology 17, 1 (2004), 27�42.

[118] MacKenzie, P. The pak suite: Protocols for password-authenticated key
exchange. In IEEE P1363.2 (2002).

[119] Mangard, S., Oswald, E., and Popp, T. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

http://www.gnu.org/s/libc/manual/
http://www.gnu.org/s/libc/manual/

90 BIBLIOGRAPHY

[120] Maurer, U. M. A provably-secure strongly-randomized cipher. In EU-
ROCRYPT (1990), pp. 361�373.

[121] Maurer, U. M. Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. J. Cryptology 5, 1 (1992), 53�66.

[122] Maurer, U. M., and Wolf, S. Secret-key agreement over unauthen-
ticated public channels III: Privacy ampli�cation. IEEE Transactions on
Information Theory 49, 4 (2003), 839�851.

[123] Messerges, T. S., Dabbish, E. A., and Puhl, L. Method and ap-
paratus for preventing information leakage attacks on a microelectronic
assembly. Technical Report, US patent 6,295,606, September 2001.

[124] Micali, S., and Reyzin, L. Physically observable cryptography (ex-
tended abstract). In Naor [126], pp. 278�296.

[125] Micciancio, D., Ed. Theory of Cryptography, 7th Theory of Cryptography
Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceed-
ings (2010), vol. 5978 of Lecture Notes in Computer Science, Springer.

[126] Naor, M., Ed. Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Pro-
ceedings (2004), vol. 2951 of Lecture Notes in Computer Science, Springer.

[127] Naor, M., and Segev, G. Public-key cryptosystems resilient to key
leakage. In Halevi [92], pp. 18�35.

[128] OpenSSL project webpage:. http://www.openssl.org accessed on
9.12.2011.

[129] Oswald, E., Mangard, S., Pramstaller, N., and Rijmen, V. A
side-channel analysis resistant description of the AES S-box. In FSE
(2005), H. Gilbert and H. Handschuh, Eds., vol. 3557 of Lecture Notes
in Computer Science, Springer, pp. 413�423.

[130] Pfitzmann, B., Ed. Advances in Cryptology - EUROCRYPT 2001, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Innsbruck, Austria, May 6-10, 2001, Proceeding (2001), vol. 2045
of Lecture Notes in Computer Science, Springer.

[131] Pietrzak, K. A leakage-resilient mode of operation. In Advances in Cryp-
tology - EUROCRYPT 2009, 28th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cologne, Germany,

http://www.openssl.org

BIBLIOGRAPHY 91

April 26-30, 2009. Proceedings (2009), A. Joux, Ed., vol. 5479 of Lecture
Notes in Computer Science, Springer, pp. 462�482.

[132] Preneel, B., Ed. Advances in Cryptology - EUROCRYPT 2000, Inter-
national Conference on the Theory and Application of Cryptographic Tech-
niques, Bruges, Belgium, May 14-18, 2000, Proceeding (2000), vol. 1807 of
Lecture Notes in Computer Science, Springer.

[133] Quisquater, J.-J., and Koene, F. Side channel attacks: State of the
art, October 2002. [77].

[134] Quisquater, J.-J., and Samyde, D. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In E-smart (2001), I. At-
tali and T. P. Jensen, Eds., vol. 2140 of Lecture Notes in Computer Science,
Springer, pp. 200�210.

[135] Rabin, T., Ed. Advances in Cryptology - CRYPTO 2010, 30th An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 15-19,
2010. Proceedings (2010), vol. 6223 of Lecture Notes in Computer Science,
Springer.

[136] Rao, A. An exposition of Bourgain's 2-source extractor. Electronic Collo-
quium on Computational Complexity (ECCC) 14, 034 (2007). http://

eccc.hpi-web.de/eccc-reports/2007/TR07-034/index.html accessed
on 9.12.2011.

[137] Regev, O. On lattices, learning with errors, random linear codes, and
cryptography. In STOC '05: Proceedings of the 37th Annual ACM Sym-
posium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005
(2005), H. N. Gabow and R. Fagin, Eds., ACM, pp. 84�93.

[138] Renner, R., and Wolf, S. Unconditional authenticity and privacy from
an arbitrarily weak secret. In Boneh [24], pp. 78�95.

[139] Rivest, R. L. All-or-nothing encryption and the package transform. In
Fast Software Encryption, 4th International Workshop, FSE '97, Haifa,
Israel, January 20-22, 1997, Proceedings (1997), E. Biham, Ed., vol. 1267
of Lecture Notes in Computer Science, Springer, pp. 210�218.

[140] Samyde, D., Skorobogatov, S., Anderson, R., and Quisquater,
J.-J. On a new way to read data from memory. In SISW '02: Proceedings of
the First International IEEE Security in Storage Workshop (Washington,
DC, USA, 2002), IEEE Computer Society, p. 65.

http://eccc.hpi-web.de/eccc-reports/2007/TR07-034/index.html
http://eccc.hpi-web.de/eccc-reports/2007/TR07-034/index.html

92 BIBLIOGRAPHY

[141] Schaumont, P., and Tiri, K. Masking and dual-rail logic don't add up.
In CHES (2007), P. Paillier and I. Verbauwhede, Eds., vol. 4727 of Lecture
Notes in Computer Science, Springer, pp. 95�106.

[142] Schramm, K., and Paar, C. Higher order masking of the aes. In CT-
RSA (2006), D. Pointcheval, Ed., vol. 3860 of Lecture Notes in Computer
Science, Springer, pp. 208�225.

[143] Shaltiel, R. How to get more mileage from randomness extractors. In
CCC '06: Proceedings of the 21st Annual IEEE Conference on Computa-
tional Complexity (Washington, DC, USA, 2006), IEEE Computer Society,
pp. 46�60.

[144] Shamir, A., and Tromer, E. Acoustic cryptanalysis. on nosy people
and noisy machines. A webpage: http://tau.ac.il/~tromer/acoustic/
accessed on 9.12.2011.

[145] Shoup, V. On formal models for secure key exchange (Version 4). Tech-
nical report RZ 3120. IBM Research Zurich, 1999.

[146] Skorobogatov, S. P., and Anderson, R. J. Optical fault induction
attacks. In Kaliski Jr et al. [102], pp. 2�12.

[147] Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung,
M., and Oswald, E. Leakage Resilient Cryptography in Practice.
Springer, November 2010, pp. 105�139.

[148] Trevisan, L., and Vadhan, S. P. Extracting randomness from sam-
plable distributions. In FOCS '00: Proceedings of 41th Annual Sympo-
sium on Foundations of Computer Science, 12-14 November 2000, Redondo
Beach, California, USA (2000), pp. 32�42.

[149] Trichina, E. Combinational logic design for AES subbyte transformation
on masked data. Technical Report, IACR report, 2003.

[150] Trichina, E., De Seta, D., and Germani, L. Simpli�ed adaptive
multiplicative masking for aes. In Kaliski Jr et al. [102], pp. 187�197.

[151] Vadhan, S. P. Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. J. Cryptology 17, 1 (2004), 43�77.

[152] Vazirani, U. V. Strong communication complexity or generating quasir-
andom sequences form two communicating semi-random sources. Combi-
natorica 7, 4 (1987), 375�392.

http://tau.ac.il/~tromer/acoustic/

BIBLIOGRAPHY 93

[153] von Neumann, J. Various techniques used in connection with random
digits. J. Research Nat. Bur. Stand., Appl. Math. Series 12 (1951), 36�38.

[154] Wagner, D., Ed. Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2008. Proceedings (2008), vol. 5157 of Lecture Notes in Computer
Science, Springer.

[155] Wegener, I. The Complexity of Boolean Functions. John Wiley and Sons
Ltd, and B. G. Teubner, 1987. See http://eccc.hpi-web.de/static/

books/The_Complexity_of_Boolean_Functions/ accessed on 9.12.2011.

[156] Wiener, M. J., Ed. Advances in Cryptology - CRYPTO '99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 15-19, 1999, Proceedings (1999), vol. 1666 of Lecture Notes in Com-
puter Science, Springer.

[157] Wikipedia. Internet socket. http://en.wikipedia.org/wiki/

Internet_socket accessed on 9.12.2011.

[158] Wolf, S. Strong security against active attacks in information-theoretic
secret-key agreement. In ASIACRYPT (1998), K. Ohta and D. Pei, Eds.,
vol. 1514 of Lecture Notes in Computer Science, Springer, pp. 405�419.

[159] Yu, Y., Standaert, F.-X., Pereira, O., and Yung, M. Practical
leakage-resilient pseudorandom generators. In ACM Conference on Com-
puter and Communications Security (2010), E. Al-Shaer, A. D. Keromytis,
and V. Shmatikov, Eds., ACM, pp. 141�151.

[160] Yung, M., Ed. Advances in Cryptology - CRYPTO 2002, 22nd Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 18-22, 2002, Proceedings (2002), vol. 2442 of Lecture Notes in Com-
puter Science, Springer.

http://eccc.hpi-web.de/static/books/The_Complexity_of_Boolean_Functions/
http://eccc.hpi-web.de/static/books/The_Complexity_of_Boolean_Functions/
http://en.wikipedia.org/wiki/Internet_socket
http://en.wikipedia.org/wiki/Internet_socket

	Notation
	List of figures
	List of tables
	Introduction
	Roadmap

	Preliminaries
	Definitions
	Statistical distance
	Entropy
	Extractors
	Universal Hash Functions

	Perfect Security and Cryptographic Hardness Assumptions
	The Random Oracle Model

	Bounded-Retrieval Model
	Universally Composable Security

	From Provable Security to Leakage-Resilient Cryptography
	Provable Security
	Side-Channel Attacks
	Countermeasures

	Leakage-Resilient Cryptography
	The Leakage Functions
	Continual Leakage Model
	Bounded Memory-Leakage Model
	Auxiliary Input Model
	Continual Memory-Leakage Model

	Leakage-Resilient Storage
	Introduction
	Memory Leakages - Previous Work
	Our Contribution
	Preliminaries

	The Definition
	A Weaker Definition

	The Implementations
	Memory Divided into Two Parts
	Functions that have small descriptions

	Comparison with FRRTV10
	Connection with the theory of compressibility of NP-instances.

	Authenticated Key Exchange Implementation in the Bounded-Retrieval Model
	Introduction
	Problem
	Contribution
	Related works

	Implementation
	Weak Key Exchange
	Password-based Authenticated Key Exchange
	Authenticated Key Exchange from Weak Key Exchange and Password-based Authenticated Key Exchange

	Analysis
	Weak Key Exchange
	Password-based Authenticated Key Exchange
	Authenticated Key Exchange

	Conclusion and future work
	Omitted Proofs
	Proofs for Chapter 4
	Proof of Lemma 1
	Proof of Lemma 6

	Bibliography

